Skip to main content
Log in

Laboratory Aspirin Resistance Reversibility in Diabetic Patients: a Pilot Study Using Different Pharmaceutical Formulations

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Aspirin resistance occurs most frequently in diabetic patients and is associated with poor prognosis. The purpose of this study was to evaluate the prevalence of aspirin resistance in a cohort of diabetic patients and whether it can be reversed using more bioavailable aspirin formulations.

Methods

Platelets function of 163 diabetic patients taking acetyl salicylic acid (ASA) 100 mg daily has been evaluated with PFA100 and VerifyNow. Patients found resistant by at least one test received an infusion of 288 mg of lysine acetylsalicylate (Flectadol®) corresponding to ASA 160 mg. Platelets function was measured again after 1 and 24 h. Patients whose the resistance was reversed received 288 mg of soluble salt of lysine acetylsalicylate (Cardirene 160®) corresponding to ASA160 mg instead of aspirin and their aggregation status was re-evaluated after 1 month of therapy.

Results

Prevalence of aspirin resistance in our population was 18,4 % (30/163). In 27 out of 30 patients (90 %) aspirin resistance was reversed within 24 h from the infusion. 25 out of 27 patients (92 %) were found fully aspirin-sensitive after 1 month of oral therapy with soluble salt; two patients were found with borderline value. No adverse reactions were observed.

Conclusions

A significant number of diabetic patients are resistant to aspirin therapy. A single intravenous dose of lysine acetylsalicylate can reverse the platelet hyper-aggregability and laboratory aspirin resistance in large majority of patients. The efficacy of antiaggregation can be maintained by chronic therapy with an oral drug with a more favourable pharmacokinetic profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACEi:

angiotensin converting enzyme inhibitor

ACS:

acute coronary syndrome

ARB:

angiotensin receptor blockers

ASA:

acetyl salicylic acid

BB:

beta-blockers

CAD:

coronary artery disease

COX 1:

cyclooxygenase 1

CT:

closure time

LAS:

lysine acetylsalicylate

OH:

oral hypoglycaemic

PFA:

Platelet Function Analyzer

PPI:

proton pump inhibitor

ROS:

reactive oxygen species

SPECT:

single-photon emission computed tomography

TIA:

transient ischaemic attack

References

  1. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;4:229–34.

    Article  Google Scholar 

  2. Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. JAMA. 1999;14:1291–7.

    Article  Google Scholar 

  3. Kahn R, Robertson RM, Smith R, Eddy D. The impact of prevention on reducing the burden of cardiovascular disease. Diabetes Care. 2008;8:1686–96.

    Article  Google Scholar 

  4. Bulugahapitiya U, Siyambalapitiya S, Sithole J, Idris I. Is diabetes a coronary risk equivalent? systematic review and meta-analysis. Diabet Med. 2009;2:142–8.

    Article  Google Scholar 

  5. Aronson D, Bloomgarden Z, Rayfield EJ. Potential mechanisms promoting restenosis in diabetic patients. J Am Coll Cardiol. 1996;27:528–35.

    Article  CAS  PubMed  Google Scholar 

  6. Donatelli M, Hoffmann E, Colletti I, et al. Circulating endothelin-1 levels in type 2 diabetic patients with ischaemic heart disease. Acta Diabetol. 1996;33:246–8.

    Article  CAS  PubMed  Google Scholar 

  7. Williams SB, Goldfine AB, Timimi FK, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation. 1998;97:1695–701.

    Article  CAS  PubMed  Google Scholar 

  8. Colwell JA, Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care. 2003;26:2181–8.

    Article  PubMed  Google Scholar 

  9. Antithrombotic Trialists Collaboration. Collaboration meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86.

    Article  Google Scholar 

  10. The Physicians’ Health Study. Aspirin for the primary prevention of myocardial infarction. N Engl J Med. 1988;318:924–6.

    Article  Google Scholar 

  11. Patrono C. Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost. 2003;1:1710–3.

    Article  CAS  PubMed  Google Scholar 

  12. Fateh-Moghadam S, Plöckinger U, Cabeza N, et al. Prevalence of aspirin resistance in patients with type 2 diabetes. Acta Diabetol. 2005;43:99–103.

    Article  Google Scholar 

  13. Krasopoulos G, Brister SJ. Aspirin “resistance” and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ. 2008;336:195–8.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Snoep JD, Hovens MM, Eikenboom JC, van der Bom JG, Huisman MV. Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events a systematic review and meta-analysis. Arch Intern Med. 2007;167:1593–9.

    Article  PubMed  Google Scholar 

  15. Cambria-Kiely JA, Gandhi PJ. Possible mechanisms of aspirin resistance. J Tromb Thrombolysis. 2002;13:49–56.

    Article  CAS  Google Scholar 

  16. Watala C, Golanski J, Pluta J, et al. Reduced sensitivity of platelets from type 2 diabetic patients to acetylsalicylic acid (aspirin);its relation to metabolic control. Thromb Res. 2004;113:101–13.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen HW, Crandall JP, Hailpern SM, Billett HH. Aspirin resistance associated with HbA1c and obesity in diabetic patients. J Diabetes Complicat. 2008;22:224–8.

    Article  PubMed  Google Scholar 

  18. Ertugrul DT, Tutal E, Yildiz M, et al. Aspirin resistance is associated with glycaemic control, the dose of aspirin, and obesity in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:2897–901.

    Article  CAS  PubMed  Google Scholar 

  19. Kim H, Lee HK, Han K, Jeon HK. Prevalence and risk factors for aspirin and clopidogrel resistance in patients with coronary artery disease or ischemic cerebrovascular disease. Ann Clin Lab Sci. 2009;39:289–94.

    CAS  PubMed  Google Scholar 

  20. Würtz M, Grove EL, Kristensen SD, Hvas AM. The antiplatelet effect of aspirin is reduced by proton pump inhibitors in patients with coronary artery disease. Heart. 2010;96:368–71.

    Article  PubMed  Google Scholar 

  21. Bauriedel G, Skowasch D, Schneider M, Andrié R, Jabs A, Lüderitz B. Antiplatelet effects of angiotensin converting enzyme inhibitors compared with aspirin and clopidogrel: a pilotstudy with whole-blood aggregometry. Am Heart J. 2003;145(2):343–8.

    Article  CAS  PubMed  Google Scholar 

  22. Maree AO, Curtin RJ, Dooley M, et al. Platelet response to low-dose enteric-coated aspirin in patients with stable cardiovascular disease. J Am Coll Cardiol. 2005;46:1258–63.

    Article  CAS  PubMed  Google Scholar 

  23. Xu ZH, Jiao JR, Yang R, Luo BY, Wang XF, Wu F. Aspirin resistence: clinical significance and genetic polymorphism. J Int Med Res. 2012;40:282–92.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma V, Kaul S, Al-Hazzani A, Alshatwi AA, Jyothy A, Munshi A. Association of COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis. 2013;35:95–9.

    Article  CAS  PubMed  Google Scholar 

  25. Grosser T, Fries S, Lawson JA, Kapoor SC, Grant GR, FitzGerald GA. Drug resistance and pseudoresistance: an unintended consequence of enteric coating aspirin. Circulation. 2013;127:377–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Feldman M, Cryer B. Aspirin absorption rates and platelet inhibition time with 325-mg buffered aspirin tablets (chewed or swallowed intact) and buffered aspirin solution. Am J Cardiol. 1999;84:404–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kratzer MA, Born GV. Simulation of primary haemostasis in vitro. Haemostasis. 1985;15:357–62.

    CAS  PubMed  Google Scholar 

  28. Kundu SK, Heilmann EJ, Sio R, Garcia C, Davidson RM. Ostgaard RA description of on in vitro platelet function analyzer – PFA 100. Semin Thromb Hemost. 1995;21:106–12.

    Article  PubMed  Google Scholar 

  29. Jilma B. Platelet function analyzer (PFA-100): a tool to quantify congenital or acquired platelet dysfunction. J Lab Clin Med. 2001;138:152–63.

    Article  CAS  PubMed  Google Scholar 

  30. Van Werkum JW, Harmsze AM, Elsenberg EH, Buoman HJ, Ten Berg JM, Hackeng CM. The use of the verifyNow system to monitor antiplatelet therapy: a review of the current evidence. Platelets. 2008;19:479–88.

    Article  PubMed  Google Scholar 

  31. Gum PA, Kottke-Marchant K, Poggio ED, et al. Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am J Cardiol. 2001;88:230–5.

    Article  CAS  PubMed  Google Scholar 

  32. Lordkipanidzé M, Diodati JG, Schampaert E, Palisaitis DA, Pharand C. Prevalence of unresponsiveness to aspirin and/or clopidogrel in patients with stable coronary heart disease. Am J Cardiol. 2009;104:1189–93.

    Article  PubMed  Google Scholar 

  33. Karnabatidis D, Spiliopoulos S, Pastromas G et al. Prevalence of nonresponsiveness to aspirin in patients with symptomatic peripheral arterial disease using true point of care testing. Cardiovasc Intervent Radiol 2013

  34. Peace A, McCall M, Tedesco T, et al. The role of weight and enteric coating on aspirin response in cardiovascular patients. J Thromb Haemost. 2010;8:2323–5.

    Article  CAS  PubMed  Google Scholar 

  35. Hobikoglu GF, Norgaz T, Aksu H, et al. The effect of acetylsalicylic acid resistance on prognosis of patients who have developed acute coronary syndrome during acetylsalicylic acid therapy. Can J Cardiol. 2007;23:201–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Angiolillo DJ. Antiplatelet therapy in type 2 diabetes mellitus. Curr Opini Endocrinol, Diabetes Obes. 2007;14:124–31.

    Article  CAS  Google Scholar 

  37. Cipollone F, Rocca B, Patrono C. Cyclooxygenase-2 expression and inhibition in atherothrombosis. Arterioscler Thromb Vasc Biol. 2004;24:246–55.

    Article  CAS  PubMed  Google Scholar 

  38. Valles J, Santos MT, Aznar J, Velert M, Barberá G, Carmena R. Modulatory effect of erythrocytes on the platelet reactivity to collagen in IDDM patients. Diabetes. 1997;46:1047–53.

    Article  CAS  PubMed  Google Scholar 

  39. Cox D, Maree AO, Dooley M, Conroy R, Byrme MF, Fitzgerald DJ. Effect of enteric coating on antiplatelet activity of low-dose aspirin in healthy volunteers. Stroke. 2006;37:2153–8.

    Article  CAS  PubMed  Google Scholar 

  40. Majluf-Cruz A, Chavez-Ochoa AR, Majluf-Cruz K, et al. Effect of combined administration of clopidogrel and lysine acetylsalicylate versus clopidogrel and aspirin on platelet aggregation and activated GpIIb/IIIa expression in healthy volunteers. Platelet. 2006;17:105–7.

    Article  CAS  Google Scholar 

  41. Gurfinkel EP, Altman R, Scazziota A, Heguilen R, Mautner B. Fast platelet suppression by lysine acetylsalicylate in chronic stable coronary patients. Potential clinical impact over regular aspirin for coronary syndromes. Clin Cardiol. 2000;23:697–700.

    Article  CAS  PubMed  Google Scholar 

  42. Fitzgerald GA, Oates JA, Hawiger J, et al. Endogeneous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. J Clin Invest. 1983;71:676–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hart RG, Leonard AD, Talbert RL, et al. Aspirin dosage and thromboxane synthesis in patients with vascular disease. Pharmacotherapy. 2003;23:579–84.

    Article  CAS  PubMed  Google Scholar 

  44. Dippel DW, Van Kooten F, Leebeek FW, et al. What is the lowest dose of aspirin for maximum suppression of in vivo thromboxane production after a transient ischemic attack or ischemic stroke? Cerebrovasc Dis. 2004;17:296–302.

    Article  CAS  PubMed  Google Scholar 

  45. Rocca B, Santilli F, Pitocco D, et al. The recovery of platelet cyclooxygenase activity explains interindividual variability of responsiveness to low-dose aspirin in patients with and without diabetes. J Thromb Haemost. 2012;10:1220–30.

    Article  CAS  PubMed  Google Scholar 

  46. Spectre G, Arnetz L, Ostenson CG, Brismar K, Li N, Hjemdahl P. Twice daily dosing of aspirin improves platelet inhibition in whole blood in patients with type 2 diabetes mellitus and micro- or macrovascular complications. Thromb Haemost. 2011;106(3):491–9.

    Article  PubMed  Google Scholar 

  47. Harrison P, Segal H, Silver L, Syed A, Cuthbertson FC, Rothwell PM. Lack of reproducibility of assessment of aspirin responsiveness by optical aggregometry and two platelet function tests. Platelets. 2008;19:119–24.

    Article  CAS  PubMed  Google Scholar 

  48. Chakroun T, Addad F, Abderazek F, et al. Screening for aspirin resistance in stable coronary artery patients by three different tests. Thromb Res. 2007;112:413–8.

    Article  Google Scholar 

  49. Karon BS, Wockenfus A, Scott R, et al. Aspirin responsiveness in healthy volunteers measured with multiple assay platforms. Clin Chem. 2008;54:1060–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Roberto Passera PhD, for his assistance during the study.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Bisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaldi, R., Bisi, M., Lonni, E. et al. Laboratory Aspirin Resistance Reversibility in Diabetic Patients: a Pilot Study Using Different Pharmaceutical Formulations. Cardiovasc Drugs Ther 28, 323–329 (2014). https://doi.org/10.1007/s10557-014-6536-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6536-7

Keywords

Navigation