Skip to main content
Log in

Dofetilide Promotes Repolarization Abnormalities in Perfused Guinea-pig Heart

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I Kr, the rapid component of the delayed rectifier K+ current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness.

Methods

The monophasic action potential duration and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated, perfused guinea-pig heart preparations.

Results

Dofetilide was found to produce the reverse rate-dependent prolongation of ventricular repolarization, increased the steepness of action potential duration rate adaptation, and amplified transepicardial variability in electrical restitution kinetics. Dofetilide also prolonged the T peak-to-end interval on ECG, and elicited a greater prolongation of endocardial than epicardial ERP, thereby increasing transmural dispersion of refractoriness. At epicardium, dofetilide prolonged action potential duration to a greater extent than ERP, thus extending the critical interval for ventricular re-excitation. This change was associated with triangulation of epicardial action potential because of greater dofetilide-induced prolonging effect at 90 % than 30 % repolarization. Premature ectopic beats and spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 44 % of dofetilide-treated heart preparations.

Conclusions

Proarrhythmic potential of dofetilide in guinea-pig heart is attributed to steepened electrical restitution, increased transepicardial variability in electrical restitution kinetics, amplified transmural dispersion of refractoriness, increased critical interval for ventricular re-excitation, and triangulation of epicardial action potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bashir Y, Thomsen PEB, Kingma JH, et al. Electrophysiologic profile and efficacy of intravenous dofetilide (UK-68,798) a new class III antiarrhythmic drug, in patients with sustained monomorphic ventricular tachycardia. Am J Cardiol. 1995;76:1040–4.

    Article  PubMed  CAS  Google Scholar 

  2. Bazett HC. An analysis of the time-relations of electrocardiogram. Heart. 1920;7:353–70.

    Google Scholar 

  3. Bianconi L, Castro A, Dinelli M, et al. Comparison of intravenously administered dofetilide versus amiodarone in the acute termination of atrial fibrillation and flutter. Eur Heart J. 2000;21:1265–73.

    Article  PubMed  CAS  Google Scholar 

  4. Boyett MR, Jewell BR. Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart. Prog Biophys Mol Biol. 1980;36:1–52.

    Article  PubMed  CAS  Google Scholar 

  5. Brahmajothi MV, Morales MJ, Reimer KA, Strauss HC. Regional localization of ERG, the channel protein responsible for the rapid component of the delayed rectifier, K+ current in the ferret heart. Circ Res. 1997;81:128–35.

    Article  PubMed  CAS  Google Scholar 

  6. Bryant SM, Wan X, Shipsey SJ, Hart G. Regional differences in the delayed rectifier current (I Kr and I Ks) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea-pig. Cardiovasc Res. 1998;40:322–31.

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet E. Voltage—and time-dependent block of the delayed K+ current in cardiac myocytes by dofetilide. J Pharmacol Exp Ther. 1992;262:809–17.

    PubMed  CAS  Google Scholar 

  8. Cheng J, Kamiya K, Liu W, Tsuji Y, Toyama J, Kodama I. Heterogeneous distribution of the two components of delayed rectifier K + current: a potential mechanism of the proarrhythmic effects of methanesulfonanilide class III agents. Cardiovasc Res. 1999;43:135–47.

    Article  PubMed  CAS  Google Scholar 

  9. Choy AMJ, Darbar D, Dell’Orto S, Roden DM. Exaggerated QT prolongation after cardioversion of atrial fibrillation. J Am Col Cardiol. 1999;34:396–401.

    Article  CAS  Google Scholar 

  10. Darbar D, Hardin B, Harris P, Roden DM. A rate-independent method of assessing QT-RR slope following conversion of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18:636–41.

    Article  PubMed  Google Scholar 

  11. Diaz A, Bourassa MG, Guertin MC, Tardif JC. Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J. 2005;26:967–74.

    Article  PubMed  Google Scholar 

  12. Du CY, El Harchi A, Zhang YH, Orchard CH, Hancox JC. Pharmacological inhibition of the hERG potassium channel is modulated by extracellular but not intracellular acidosis. J Cardiovasc Electrophysiol. 2011;22:1163–70.

    Article  PubMed  CAS  Google Scholar 

  13. Duff HJ, Feng ZP, Fiset C, Wang L, Lees-Miller J, Sheldon RS. [3H]Dofetilide binding to cardiac myocytes: modulation by extracellular potassium. J Mol Cell Cardiol. 1997;29:183–91.

    Article  PubMed  CAS  Google Scholar 

  14. Falk RH, Pollak A, Singh SN, Friedrich T. Intravenous dofetilide, a class III antiarrhythmic agent, for the termination of sustained atrial fibrillation or flutter. J Am Col Cardiol. 1997;29:385–90.

    Article  CAS  Google Scholar 

  15. Garfinkel A, Kim YH, Voroshilovsky O, et al. Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci USA. 2000;97:6061–6.

    Article  PubMed  CAS  Google Scholar 

  16. Gibbs M, Veliotes DG, Anamourlis C, et al. Chronic beta-adrenoreceptor activation increases cardiac cavity size through chamber remodelling and not via modifications in myocardial material properties. Am J Physiol Heart Circ Physiol. 2004;287:H2762–7.

    Article  PubMed  CAS  Google Scholar 

  17. Gjini V, Korth M, Schreieck J, Weyerbrock S, Schomig A, Schmitt C. Differential class III antiarrhythmic effects of ambasilide and dofetilide at different extracellular potassium and pacing frequencies. J Cardiovasc Pharmacol. 1996;28:314–20.

    Article  PubMed  CAS  Google Scholar 

  18. Grassi G, Seravalle G, Quarti-Trevano F, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53:205–9.

    Article  PubMed  CAS  Google Scholar 

  19. Hondeghem L, Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but APD prolongation is antiarrhythmic. Circulation. 2001;103:2004–13.

    Article  PubMed  CAS  Google Scholar 

  20. Jurkiewicz NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Circ Res. 1993;72:75–83.

    Article  PubMed  CAS  Google Scholar 

  21. Koller ML, Riccio ML, Gilmour RF. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am J Physiol Heart Circ Physiol. 1998;275:H1635–42.

    CAS  Google Scholar 

  22. Laurita KR, Girouard SD, Rosenbaum DS. Modulation of ventricular repolarization by a premature stimulus. Role of epicardial dispersion of repolarization kinetics demonstrated by optical mapping of the intact guinea-pig heart. Circ Res. 1996;79:493–503.

    Article  PubMed  CAS  Google Scholar 

  23. Marschang H, Beyer T, Karolyi L, Kubler W, Brachmann J. Differential rate and potassium-dependent effects of the class III agents d-sotalol and dofetilide on guinea-pig papillary muscle. Cardiovasc Drugs Ther. 1998;12:573–83.

    Article  PubMed  CAS  Google Scholar 

  24. Nabauer M, Kaab S. Potassium channel down-regulation in heart failure. Cardiovasc Res. 1998;37:324–34.

    Article  PubMed  CAS  Google Scholar 

  25. Nash MP, Bradley CP, Sutton PM, et al. Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study. Exp Physiol. 2006;91:339–54.

    Article  PubMed  Google Scholar 

  26. Osadchii O, Norton G, Deftereos D, Woodiwiss A. Rat strain-related differences in myocardial adrenergic tone and the impact on cardiac fibrosis, adrenergic responsiveness and myocardial structure and function. Pharmacol Res. 2007;55:287–94.

    Article  PubMed  CAS  Google Scholar 

  27. Osadchii O, Woodiwiss A, Alves N, Norton G. Mechanisms of preserved baseline cardiac systolic function in rats with adrenergic inotropic downregulation. Life Sci. 2005;78:366–75.

    Article  PubMed  CAS  Google Scholar 

  28. Osadchii OE. Mechanisms of hypokalemia-induced ventricular arrhythmogenicity. Fund Clin Pharmacol. 2010;24:547–59.

    Article  CAS  Google Scholar 

  29. Osadchii OE, Larsen AP, Olesen SP. Predictive value of electrical restitution in hypokalemia-induced ventricular arrhythmogenicity. Am J Physiol Heart Circ Physiol. 2010;298:H210–20.

    Article  PubMed  CAS  Google Scholar 

  30. Osadchii OE, Olesen SP. Electrophysiological determinants of hypokalemia-induced arrhythmogenicity in the guinea-pig heart. Acta Physiol (Oxf). 2009;197:273–87.

    Article  CAS  Google Scholar 

  31. Osadchii OE. Effects of ventricular pacing protocol on electrical restitution assessments in guinea-pig heart. Exp Physiol. 2012;97:807–21.

    Article  PubMed  CAS  Google Scholar 

  32. Pak HN, Hong SJ, Hwang GS, et al. Spatial dispersion of action potential duration restitution kinetics is associated with induction of ventricular tachycardia/fibrillation in humans. J Cardiovasc Electrophysiol. 2004;15:1357–63.

    Article  PubMed  Google Scholar 

  33. Riccio ML, Koller ML, Gilmour RF. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ Res. 1999;84:955–63.

    Article  PubMed  CAS  Google Scholar 

  34. Sabir IN, Fraser JA, Killeen MJ, Grace AA, Huang CL. The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts. Pflugers Arch. 2007;454:209–22.

    Article  PubMed  CAS  Google Scholar 

  35. Sanguinetti MC, Jurkiewicz NK. Role of external Ca2+ and K+ in gating of cardiac delayed rectifier K+ currents. Pflugers Arch. 1992;420:180–6.

    Article  PubMed  CAS  Google Scholar 

  36. Scamps F, Carmeliet E. Delayed K+ current and external K+ in single cardiac Purkinje cells. Am J Physiol Cell Physiol. 1989;257:C1086–92.

    CAS  Google Scholar 

  37. Sedgwick ML, Rasmussen HS, Cobbe SM. Effects of the class III antiarrhythmic drug dofetilide on ventricular monophasic action potential duration and QT interval dispersion in stable angina pectoris. Am J Cardiol. 1992;70:1432–7.

    Article  PubMed  CAS  Google Scholar 

  38. Sedgwick ML, Rasmussen HS, Cobbe SM. Clinical and electrophysiologic effects of intravenous dofetilide (UK-68,798), a new class III antiarrhythmic drug, in patients with angina pectoris. Am J Cardiol. 1992;69:513–7.

    Article  PubMed  CAS  Google Scholar 

  39. Shah RR, Hondeghem LM. Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Hear Rhythm. 2005;2:758–72.

    Article  Google Scholar 

  40. Singh S, Zoble RG, Yellen L, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter. Circulation. 2000;102:2385–90.

    Article  PubMed  CAS  Google Scholar 

  41. Soltysinska E, Olesen SP, Osadchii OE. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation. Exp Physiol. 2011;96:647–63.

    Article  PubMed  Google Scholar 

  42. Tomaselli GF, Marban E. Electrophysiological remodelling in hypertrophy and heart failure. Cardiovasc Res. 1999;42:270–83.

    Article  PubMed  CAS  Google Scholar 

  43. Torp-Pedersen C, Moller M, Bloch-Thomsen PE, et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction. New Engl J Med. 1999;341:857–65.

    Article  PubMed  CAS  Google Scholar 

  44. Volders PGA, Vos MA, Szabo B, et al. Progress in the understanding of cardiac early afterdepolarizations and torsade de pointes: time to revise current concepts. Cardiovasc Res. 2000;46:376–92.

    Article  PubMed  CAS  Google Scholar 

  45. Weiss JN, Garfinkel A, Karaguezian HS, Qu Z, Chen PS. Chaos and the transition to ventricular fibrillation. A new approach to antiarrhythmic drug evaluation. Circulation. 1999;99:2819–26.

    Article  PubMed  CAS  Google Scholar 

  46. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long QT syndrome. Circulation. 1998;98:1928–36.

    Article  PubMed  CAS  Google Scholar 

  47. Yang T, Tande PM, Lathrop DA, Refsum H. Effects of altered extracellular potassium and pacing cycle length on the class III antiarrhythmic actions of dofetilide (UK-68,798) in guinea-pig papillary muscle. Cardiovasc Drugs Ther. 1992;6:429–36.

    Article  PubMed  CAS  Google Scholar 

  48. Yang T, Roden DM. Extracellular potassium modulation of drug block of I Kr. Circulation. 1996;93:407–11.

    Article  PubMed  CAS  Google Scholar 

  49. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea-pig type. Theoretical formulation and their role in repolarization. Circ Res. 1995;77:140–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Novo Nordisk Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg E. Osadchii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osadchii, O.E. Dofetilide Promotes Repolarization Abnormalities in Perfused Guinea-pig Heart. Cardiovasc Drugs Ther 26, 489–500 (2012). https://doi.org/10.1007/s10557-012-6405-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-012-6405-1

Key words

Navigation