Skip to main content

Advertisement

Log in

Tissue engineering and regenerative medicine in musculoskeletal oncology

  • CLINICAL
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Currently used surgical techniques to reconstruct tissue defects after resection of musculoskeletal tumours are associated with high complication rates. This drives a strong demand for innovative therapeutic concepts that are able to improve the clinical outcomes of patients suffering from bone and soft tissue tumours. Tissue engineering and regenerative medicine (TE&RM) provides a technology platform based on biochemical, molecular, cellular and biomaterials modules to selectively direct tissue healing processes for improved defect regeneration. At the same time, precautionary measures have to be taken when these instruments are used in cancer patients to prevent any promotion of tumour growth or metastatic spread. On the other hand, several innovative TE&RM tools are being developed such as multi-functionalized biomaterials, drug-delivering nanomaterials or genetically engineered stem cells that per se have the potential to mediate anti-cancer effects, act synergistically with currently used chemotherapeutics and/or radiotherapy regimens and reduce their side effects. Recently, scientists became conscious that TE&RM strategies may not only be utilized to advance contemporary tissue reconstruction techniques but also to develop personalized diagnostic tools and clinically relevant disease models for cancer patients. Eventually, prospective randomized clinical trials combined with comparative outcome analyses are a conditio sine qua non to shape the benefits of personalized regenerative therapies for the standardized management of patients with musculoskeletal tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: a Cancer Journal for Clinicians, 65(1), 5–29.

    Google Scholar 

  2. American Cancer Society. Cancer Treatment and Survivorship Facts & Figures 2014–2015. (2014). American Cancer Society. http://www.cancer.org/research/cancerfactsstatistics/survivor-facts-figures. Accessed 13.09.2015.

  3. Mirabello, L., Troisi, R. J., & Savage, S. A. (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer, 115(7), 1531–1543.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Holzapfel BM, Pilge H, Prodinger PM, Toepfer A, Mayer-Wagner S, Hutmacher DW, von Eisenhart-Rothe R, Rudert M, Gradinger R, Rechl H (2014) Customised osteotomy guides and endoprosthetic reconstruction for periacetabular tumours. Int Orthop.

  5. Pilge, H., Holzapfel, B. M., Rechl, H., Prodinger, P. M., Lampe, R., Saur, U., Eisenhart-Rothe, R., & Gollwitzer, H. (2015). Function of the extensor mechanism of the knee after using the ‘patellar-loop technique’ to reconstruct the patellar tendon when replacing the proximal tibia for tumour. Bone Joint J, 97-B(8), 1063–1069.

    Article  CAS  PubMed  Google Scholar 

  6. Holzapfel, B. M., Pilge, H., Toepfer, A., Jakubietz, R. G., Gollwitzer, H., Rechl, H., von Eisenhart-Rothe, R., & Rudert, M. (2012). Proximal tibial replacement and alloplastic reconstruction of the extensor mechanism after bone tumor resection. Operative Orthopädie und Traumatologie, 24(3), 247–262.

    Article  CAS  PubMed  Google Scholar 

  7. Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine, 3(4), a010306.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Skalak, R., & Fox, C. F. (1988). In: NSF workshop, UCLA symposia on molecular and cellular biology, Granlibakken, Lake Tahoe. New York: Alan R. Liss Inc..

    Google Scholar 

  9. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926.

    Article  CAS  PubMed  Google Scholar 

  10. Holzapfel, B. M., Reichert, J. C., Schantz, J. T., Gbureck, U., Rackwitz, L., Noth, U., Jakob, F., Rudert, M., Groll, J., & Hutmacher, D. W. (2013). How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug Delivery Reviews, 65(4), 581–603.

    Article  CAS  PubMed  Google Scholar 

  11. Warnke, P. H., Springer, I. N., Wiltfang, J., Acil, Y., Eufinger, H., Wehmoller, M., Russo, P. A., Bolte, H., Sherry, E., Behrens, E., & Terheyden, H. (2004). Growth and transplantation of a custom vascularised bone graft in a man. Lancet, 364(9436), 766–770.

    Article  CAS  PubMed  Google Scholar 

  12. Fulco, I., Miot, S., Haug, M. D., Barbero, A., Wixmerten, A., Feliciano, S., Wolf, F., Jundt, G., Marsano, A., Farhadi, J., Heberer, M., Jakob, M., Schaefer, D. J., & Martin, I. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet, 384(9940), 337–346.

    Article  CAS  PubMed  Google Scholar 

  13. Chian, K. S., Leong, M. F., & Kono, K. (2015). Regenerative medicine for oesophageal reconstruction after cancer treatment. The Lancet Oncology, 16(2), e84–e92.

    Article  PubMed  Google Scholar 

  14. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367(9518), 1241–1246.

    Article  PubMed  Google Scholar 

  15. Macchiarini, P., Jungebluth, P., Go, T., Asnaghi, M. A., Rees, L. E., Cogan, T. A., Dodson, A., Martorell, J., Bellini, S., Parnigotto, P. P., Dickinson, S. C., Hollander, A. P., Mantero, S., Conconi, M. T., & Birchall, M. A. (2008). Clinical transplantation of a tissue-engineered airway. Lancet, 372(9655), 2023–2030.

    Article  PubMed  Google Scholar 

  16. Azarin, S. M., Yi, J., Gower, R. M., Aguado, B. A., Sullivan, M. E., Goodman, A. G., Jiang, E. J., Rao, S. S., Ren, Y., Tucker, S. L., Backman, V., Jeruss, J. S., & Shea, L. D. (2015). In vivo capture and label-free detection of early metastatic cells. Nature Communications, 6, 8094.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hutmacher, D. W., Holzapfel, B. M., De-Juan-Pardo, E., Loessner, D., Pereira, B., Ellem, S., Risbridger, G. (2015) Convergence of regenerative medicine and systems biology to develop clinically relevant models of human diseases. Current opinion in biotechnology, 35, 127-132.

  18. Hutmacher, D. W. (2010). Biomaterials offer cancer research the third dimension. Nature Materials, 9(2), 90–93.

    Article  CAS  PubMed  Google Scholar 

  19. Salter, E., Goh, B., Hung, B., Hutton, D., Ghone, N., & Grayson, W. L. (2011). Bone tissue engineering bioreactors: a role in the clinic? Tissue Engineering Part B: Reviews, 18(1), 62–75.

    Article  Google Scholar 

  20. Woodruff, M. A., Lange, C., Reichert, J., Berner, A., Chen, F. L., Fratzl, P., Schantz, J. T., & Hutmacher, D. W. (2012). Bone tissue engineering: from bench to bedside. Materials Today, 15(10), 430–435.

    Article  CAS  Google Scholar 

  21. Pountos, I., Panteli, M., Georgouli, T., & Giannoudis, P. V. (2014). Neoplasia following use of BMPs: is there an increased risk? Expert Opinion on Drug Safety, 13(11), 1525–1534.

    Article  CAS  PubMed  Google Scholar 

  22. Serakinci, N., Fahrioglu, U., & Christensen, R. (2014). Mesenchymal stem cells, cancer challenges and new directions. European Journal of Cancer, 50(8), 1522–1530.

    Article  CAS  PubMed  Google Scholar 

  23. Copelan, E. A. (2006). Hematopoietic stem-cell transplantation. The New England Journal of Medicine, 354(17), 1813–1826.

    Article  CAS  PubMed  Google Scholar 

  24. Atsuta, Y., Suzuki, R., Yamashita, T., Fukuda, T., Miyamura, K., Taniguchi, S., Iida, H., Uchida, T., Ikegame, K., Takahashi, S., Kato, K., Kawa, K., Nagamura-Inoue, T., Morishima, Y., Sakamaki, H., Kodera, Y., & Japan Society for Hematopoietic Cell T (2014). Continuing increased risk of oral/esophageal cancer after allogeneic hematopoietic stem cell transplantation in adults in association with chronic graft-versus-host disease. Annals of Oncology, 25(2), 435–441.

    Article  CAS  PubMed  Google Scholar 

  25. Forrest, D. L., Nevill, T. J., Naiman, S. C., Le, A., Brockington, D. A., Barnett, M. J., Lavoie, J. C., Nantel, S. H., Song, K. W., Shepherd, J. D., Sutherland, H. J., Toze, C. L., Davis, J. H., & Hogge, D. E. (2003). Second malignancy following high-dose therapy and autologous stem cell transplantation: incidence and risk factor analysis. Bone Marrow Transplantation, 32(9), 915–923.

    Article  CAS  PubMed  Google Scholar 

  26. Lyman, G. H., Dale, D. C., Wolff, D. A., Culakova, E., Poniewierski, M. S., Kuderer, N. M., & Crawford, J. (2010). Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. Journal of Clinical Oncology, 28(17), 2914–2924.

    Article  PubMed  Google Scholar 

  27. Puhalla, S., Bhattacharya, S., & Davidson, N. E. (2012). Hematopoietic growth factors: personalization of risks and benefits. Molecular Oncology, 6(2), 237–241.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S., Idowu, O., Li, M., Shen, C., Hu, A., Haydon, R. C., Kang, R., Mok, J., Lee, M. J., Luu, H. L., & Shi, L. L. (2014). Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis, 1(1), 87–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carreira, A. C., Alves, G. G., Zambuzzi, W. F., Sogayar, M. C., & Granjeiro, J. M. (2014). Bone morphogenetic proteins: structure, biological function and therapeutic applications. Archives of Biochemistry and Biophysics, 561, 64–73.

    Article  CAS  PubMed  Google Scholar 

  30. David, L., Feige, J. J., & Bailly, S. (2009). Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine & Growth Factor Reviews, 20(3), 203–212.

    Article  CAS  Google Scholar 

  31. Holzapfel, B. M., Wagner, F., Loessner, D., Holzapfel, N. P., Thibaudeau, L., Crawford, R., Ling, M. T., Clements, J. A., Russell, P. J., & Hutmacher, D. W. (2014). Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone. Biomaterials, 35(13), 4108–4115.

    Article  CAS  PubMed  Google Scholar 

  32. Lo, K. W., Ulery, B. D., Ashe, K. M., & Laurencin, C. T. (2012). Studies of bone morphogenetic protein-based surgical repair. Advanced Drug Delivery Reviews, 64(12), 1277–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ong, K. L., Villarraga, M. L., Lau, E., Carreon, L. Y., Kurtz, S. M., & Glassman, S. D. (2010). Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine (Phila Pa 1976), 35(19), 1794–1800.

    Article  Google Scholar 

  34. James AW, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X, Ting K, Soo C (2016) A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev.

  35. Carragee, E. J., Chu, G., Rohatgi, R., Hurwitz, E. L., Weiner, B. K., Yoon, S. T., Comer, G., & Kopjar, B. (2013). Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. The Journal of Bone and Joint Surgery. American Volume, 95(17), 1537–1545.

    Article  PubMed  Google Scholar 

  36. Bell, R. B., & Gregoire, C. (2009). Reconstruction of mandibular continuity defects using recombinant human bone morphogenetic protein 2: a note of caution in an atmosphere of exuberance. Journal of Oral and Maxillofacial Surgery, 67(12), 2673–2678.

    Article  PubMed  Google Scholar 

  37. Heliotis, M., Lavery, K. M., Ripamonti, U., Tsiridis, E., & di Silvio, L. (2006). Transformation of a prefabricated hydroxyapatite/osteogenic protein-1 implant into a vascularised pedicled bone flap in the human chest. International Journal of Oral and Maxillofacial Surgery, 35(3), 265–269.

    Article  CAS  PubMed  Google Scholar 

  38. Warnke, P. H., Wiltfang, J., Springer, I., Acil, Y., Bolte, H., Kosmahl, M., Russo, P. A., Sherry, E., Lutzen, U., Wolfart, S., & Terheyden, H. (2006). Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials, 27(17), 3163–3167.

    Article  CAS  PubMed  Google Scholar 

  39. Orringer, J. S., Shaw, W. W., Borud, L. J., Freymiller, E. G., Wang, S. A., & Markowitz, B. L. (1999). Total mandibular and lower lip reconstruction with a prefabricated osteocutaneous free flap. Plastic and Reconstructive Surgery, 104(3), 793–797.

    Article  CAS  PubMed  Google Scholar 

  40. Valentin-Opran, A., Wozney, J., Csimma, C., Lilly, L., & Riedel, G. E. (2002). Clinical evaluation of recombinant human bone morphogenetic protein-2. Clinical Orthopaedics and Related Research, 395, 110–120.

    Article  PubMed  Google Scholar 

  41. Louis-Ugbo, J., Kim, H. S., Boden, S. D., Mayr, M. T., Li, R. C., Seeherman, H., D'Augusta, D., Blake, C., Jiao, A., & Peckham, S. (2002). Retention of 125I-labeled recombinant human bone morphogenetic protein-2 by biphasic calcium phosphate or a composite sponge in a rabbit posterolateral spine arthrodesis model. Journal of Orthopaedic Research, 20(5), 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  42. Erickson, B. P., Pierce, A. R., Simpson, A. K., Nash, J., & Grauer, J. N. (2008). 125I-labeled OP-1 is locally retained in a rabbit lumbar fusion model. Clinical Orthopaedics and Related Research, 466(1), 210–215.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reichert, J. C., Quent, V. M., Noth, U., & Hutmacher, D. W. (2011). Ovine cortical osteoblasts outperform bone marrow cells in an ectopic bone assay. Journal of Tissue Engineering and Regenerative Medicine, 5(10), 831–844.

    Article  CAS  PubMed  Google Scholar 

  44. Reichert, J. C., Woodruff, M. A., Friis, T., Quent, V. M., Gronthos, S., Duda, G. N., Schutz, M. A., & Hutmacher, D. W. (2010). Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. Journal of Tissue Engineering and Regenerative Medicine, 4(7), 565–576.

    Article  CAS  PubMed  Google Scholar 

  45. Rasi Ghaemi S, Delalat B, Ceto X, Harding FJ, Tuke J, Voelcker NH (2015) Synergistic influence of collagen I and BMP 2 drives osteogenic differentiation of mesenchymal stem cells: a cell microarray analysis. Acta Biomater.

  46. Sandor, G. K., Tuovinen, V. J., Wolff, J., Patrikoski, M., Jokinen, J., Nieminen, E., Mannerstrom, B., Lappalainen, O. P., Seppanen, R., & Miettinen, S. (2013). Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. Journal of Oral and Maxillofacial Surgery, 71(5), 938–950.

    Article  PubMed  Google Scholar 

  47. Mesimaki, K., Lindroos, B., Tornwall, J., Mauno, J., Lindqvist, C., Kontio, R., Miettinen, S., & Suuronen, R. (2009). Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. International Journal of Oral and Maxillofacial Surgery, 38(3), 201–209.

    Article  CAS  PubMed  Google Scholar 

  48. Arrabal, P. M., Visser, R., Santos-Ruiz, L., Becerra, J., & Cifuentes, M. (2013). Osteogenic molecules for clinical applications: improving the BMP-collagen system. Biological Research, 46(4), 421–429.

    Article  PubMed  Google Scholar 

  49. Wei, X., Yang, X., Han, Z. P., Qu, F. F., Shao, L., & Shi, Y. F. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica, 34(6), 747–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grayson, W. L., Bunnell, B. A., Martin, E., Frazier, T., Hung, B. P., & Gimble, J. M. (2015). Stromal cells and stem cells in clinical bone regeneration. Nature Reviews. Endocrinology, 11(3), 140–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeong, J. O., Han, J. W., Kim, J. M., Cho, H. J., Park, C., Lee, N., Kim, D. W., & Yoon, Y. S. (2011). Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Research, 108(11), 1340–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Torsvik, A., Rosland, G. V., Svendsen, A., Molven, A., Immervoll, H., McCormack, E., Lonning, P. E., Primon, M., Sobala, E., Tonn, J. C., Goldbrunner, R., Schichor, C., Mysliwietz, J., Lah, T. T., Motaln, H., Knappskog, S., & Bjerkvig, R. (2010). Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track—letter. Cancer Research, 70(15), 6393–6396.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y., Huso, D. L., Harrington, J., Kellner, J., Jeong, D. K., Turney, J., & McNiece, I. K. (2005). Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy, 7(6), 509–519.

    Article  CAS  PubMed  Google Scholar 

  54. Hatzistergos, K. E., Blum, A., Ince, T., Grichnik, J. M., & Hare, J. M. (2011). What is the oncologic risk of stem cell treatment for heart disease? Circulation Research, 108(11), 1300–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hernigou, P., Homma, Y., Flouzat-Lachaniette, C. H., Poignard, A., Chevallier, N., & Rouard, H. (2013). Cancer risk is not increased in patients treated for orthopaedic diseases with autologous bone marrow cell concentrate. The Journal of Bone and Joint Surgery. American Volume, 95(24), 2215–2221.

    Article  PubMed  Google Scholar 

  56. Donnenberg, V. S., Zimmerlin, L., Rubin, J. P., & Donnenberg, A. D. (2010). Regenerative therapy after cancer: what are the risks? Tissue Engineering. Part B, Reviews, 16(6), 567–575.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zimmerlin, L., Park, T. S., Zambidis, E. T., Donnenberg, V. S., & Donnenberg, A. D. (2013). Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie, 95(12), 2235–2245.

    Article  CAS  PubMed  Google Scholar 

  58. Uchibori, R., Tsukahara, T., Ohmine, K., & Ozawa, K. (2014). Cancer gene therapy using mesenchymal stem cells. International Journal of Hematology, 99(4), 377–382.

    Article  CAS  PubMed  Google Scholar 

  59. U.S. National Institutes of Health. ClinicalTrials.gov. (2015). https://clinicaltrials.gov/ct2/results?term=mesenchymal+stem+cells+&Search=Search. Accessed 17.11.2015.

  60. Hernandez-Alfaro, F., Ruiz-Magaz, V., Chatakun, P., & Guijarro-Martinez, R. (2012). Mandibular reconstruction with tissue engineering in multiple recurrent ameloblastoma. The International Journal of Periodontics & Restorative Dentistry, 32(3), e82–e86.

    Google Scholar 

  61. Hernigou, P., Flouzat Lachaniette, C. H., Delambre, J., Chevallier, N., & Rouard, H. (2014). Regenerative therapy with mesenchymal stem cells at the site of malignant primary bone tumour resection: what are the risks of early or late local recurrence? International Orthopaedics, 38(9), 1825–1835.

    Article  PubMed  Google Scholar 

  62. Morishita, T., Honoki, K., Ohgushi, H., Kotobuki, N., Matsushima, A., & Takakura, Y. (2006). Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artificial Organs, 30(2), 115–118.

    Article  PubMed  Google Scholar 

  63. Xie, H. Q., Huang, F. G., Zhao, Y. F., Qin, T. W., Li, X. Q., Liu, C., Li-Ling, J., & Yang, Z. M. (2014). Tissue-engineered ribs for chest wall reconstruction: a case with 12-year follow-up. Regenerative Medicine, 9(4), 431–436.

    Article  CAS  PubMed  Google Scholar 

  64. Reppenhagen, S., Reichert, J. C., Rackwitz, L., Rudert, M., Raab, P., Daculsi, G., & Noth, U. (2012). Biphasic bone substitute and fibrin sealant for treatment of benign bone tumours and tumour-like lesions. International Orthopaedics, 36(1), 139–148.

    Article  PubMed  Google Scholar 

  65. Garcia-Gareta, E., Coathup, M. J., & Blunn, G. W. (2015). Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 81, 112–121.

    Article  CAS  PubMed  Google Scholar 

  66. Marques, C., Ferreira, J. M., Andronescu, E., Ficai, D., Sonmez, M., & Ficai, A. (2014). Multifunctional materials for bone cancer treatment. International Journal of Nanomedicine, 9, 2713–2725.

    PubMed  PubMed Central  Google Scholar 

  67. Tanzawa, Y., Tsuchiya, H., Shirai, T., Nishida, H., Hayashi, K., Takeuchi, A., Kawahara, M., & Tomita, K. (2011). Potentiation of the antitumor effect of calcium phosphate cement containing anticancer drug and caffeine on rat osteosarcoma. Journal of Orthopaedic Science, 16(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  68. Andronescu, E., Ficai, A., Georgiana, M., Mitran, V., Sonmez, M., Ficai, D., Ion, R., & Cimpean, A. (2013). Collagen-hydroxyapatite/cisplatin drug delivery systems for locoregional treatment of bone cancer. Technol Cancer Res T, 12(4), 275–284.

    CAS  Google Scholar 

  69. Chai, F., Abdelkarim, M., Laurent, T., Tabary, N., Degoutin, S., Simon, N., Peters, F., Blanchemain, N., Martel, B., & Hildebrand, H. F. (2014). Poly-cyclodextrin functionalized porous bioceramics for local chemotherapy and anticancer bone reconstruction. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 102(6), 1130–1139.

    Article  PubMed  Google Scholar 

  70. Palazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C. L., Walsh, D., Mann, S., & Roveri, N. (2007). Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Advanced Functional Materials, 17(13), 2180–2188.

    Article  CAS  Google Scholar 

  71. Tahara, Y., & Ishii, Y. (2001). Apatite cement containing cis-diamminedichloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation. Journal of Orthopaedic Science, 6(6), 556–565.

    Article  CAS  PubMed  Google Scholar 

  72. Itokazu, M., Kumazawa, S., Wada, E., & Wenyi, Y. (1996). Sustained release of adriamycin from implanted hydroxyapatite blocks for the treatment of experimental osteogenic sarcoma in mice. Cancer Letters, 107(1), 11–18.

    Article  CAS  PubMed  Google Scholar 

  73. Cole LE, Vargo-Gogola T, Roeder RK (2015) Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev.

  74. Iafisco, M., & Margiotta, N. (2012). Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum-bisphosphonate complexes in the treatment of bone tumors: a mini-review. Journal of Inorganic Biochemistry, 117, 237–247.

    Article  CAS  PubMed  Google Scholar 

  75. Yilgor, P., Tuzlakoglu, K., Reis, R. L., Hasirci, N., & Hasirci, V. (2009). Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials, 30(21), 3551–3559.

    Article  CAS  PubMed  Google Scholar 

  76. Acharya, S., & Sahoo, S. K. (2011). PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews, 63(3), 170–183.

    Article  CAS  PubMed  Google Scholar 

  77. Gu, W., Wu, C., Chen, J., & Xiao, Y. (2013). Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. International Journal of Nanomedicine, 8, 2305–2317.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rawat, P., Manglani, K., Gupta, S., Kalam, A., Vohora, D., Ahmad, F. J., & Talegaonkar, S. (2015). Design and development of bioceramic based functionalized PLGA nanoparticles of risedronate for bone targeting: in vitro characterization and pharmacodynamic evaluation. Pharm Res-Dordr, 32(10), 3149–3158.

    Article  CAS  Google Scholar 

  79. Zhang, P., Hong, Z., Yu, T., Chen, X., & Jing, X. (2009). In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide. Biomaterials, 30(1), 58–70.

    Article  PubMed  Google Scholar 

  80. Holzapfel B, Wagner, F., Winkler, S., Graessel, S., Rudert, M., Grifka, J., Hutmacher, D. W. (2014). A humanized animal model to dissect species-specific mechanisms of human osteosarcoma growth and metastasis. In: Deutscher Kongress fuer Orthopaedie und Unfallchirurgie, Berlin, Germany.

  81. Holzapfel, B. M., Thibaudeau, L., Hesami, P., Taubenberger, A., Holzapfel, N. P., Mayer-Wagner, S., Power, C., Clements, J., Russell, P., & Hutmacher, D. W. (2013). Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Reviews, 32(1–2), 129–145.

    Article  CAS  PubMed  Google Scholar 

  82. Kolambkar, Y. M., Dupont, K. M., Boerckel, J. D., Huebsch, N., Mooney, D. J., Hutmacher, D. W., & Guldberg, R. E. (2011). An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials, 32(1), 65–74.

    Article  CAS  PubMed  Google Scholar 

  83. Thibaudeau, L., Taubenberger, A. V., Holzapfel, B. M., Quent, V. M., Fuehrmann, T., Hesami, P., Brown, T. D., Dalton, P. D., Power, C. A., Hollier, B. G., & Hutmacher, D. W. (2014). A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Disease Models & Mechanisms, 7(2), 299–309.

    Article  CAS  Google Scholar 

  84. Wagner, F., Holzapfel, B. M., Thibaudeau, L., Straub, M., Ling, M. T., Grifka, J., Loessner, D., Levesque, J. P., & Hutmacher, D. W. (2016). A validated preclinical animal model for primary bone tumor research. The Journal of Bone and Joint Surgery. American Volume, 98(11), 916–925.

    Article  PubMed  Google Scholar 

  85. Murphy, F., & Corbally, M. T. (2007). The novel use of small intestinal submucosal matrix for chest wall reconstruction following Ewing’s tumour resection. Pediatric Surgery International, 23(4), 353–356.

    Article  PubMed  Google Scholar 

  86. Nathan, S. S., Guerzon, E. R., Bhavanam, K., Tan, L. H., Zarchi, K., & Pereira, B. P. (2011). Collagen membranes for host-implant integration: a pilot clinical study. Journal of Orthopaedic Surgery (Hong Kong), 19(2), 157–163.

    Article  Google Scholar 

  87. Holzapfel, B. M., Wagner, F., Thibaudeau, L., Levesque, J. P., & Hutmacher, D. W. (2015). Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering. Stem Cells, 33(6), 1696–1704.

    Article  CAS  PubMed  Google Scholar 

  88. Thibaudeau, L., Holzapfel, B. M., & Hutmacher, D. W. (2015). Humanized mice models for primary bone tumor and bone metastasis research. Cell Cycle, 14(14), 2191–2192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Seib, F. P., Berry, J. E., Shiozawa, Y., Taichman, R. S., & Kaplan, D. L. (2015). Tissue engineering a surrogate niche for metastatic cancer cells. Biomaterials, 51, 313–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thibaudeau, L., Taubenberger, A. V., Theodoropoulos, C., Holzapfel, B. M., Ramuz, O., Straub, M., & Hutmacher, D. W. (2015). New mechanistic insights of integrin beta1 in breast cancer bone colonization. Oncotarget, 6(1), 332–344.

    PubMed  Google Scholar 

  91. Holzapfel, B. M., Hutmacher, D. W., Nowlan, B., Barbier, V., Thibaudeau, L., Theodoropoulos, C., Hooper, J. D., Loessner, D., Clements, J. A., Russell, P. J., Pettit, A. R., Winkler, I. G., & Levesque, J. P. (2015). Tissue engineered humanized bone supports human hematopoiesis in vivo. Biomaterials, 61, 103–114.

    Article  CAS  PubMed  Google Scholar 

  92. Dondossola, E., Alexander, S., Alexander, S., Holzapfel, B. M., Logothetis, C. J., Hutmacher, D. W., & Friedl, P. (2014). A humanized bone model for preclinical monitoring of prostate cancer lesions by intravital multiphoton microscopy. In: proceedings of the 105th annual meeting of the American Association for Cancer Research. Cancer Research, 74(19 Suppl), 4941.

    Article  Google Scholar 

Download references

Acknowledgments

BMH and FW are supported by the German Research Foundation (DFG HO 5068/1-1 to BMH and DFG WA 3606/1-1 to FW). BMH and DWH are supported by a project grant from the National Health and Medical Research Council (NHMRC, APP ID 1082313) and an innovator grant from the National Breast Cancer Foundation (NBCF, IN-15-047). DWH is supported by a grant from Worldwide Cancer Research (WWCR, 15-11563).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boris Michael Holzapfel or Dietmar Werner Hutmacher.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzapfel, B.M., Wagner, F., Martine, L.C. et al. Tissue engineering and regenerative medicine in musculoskeletal oncology. Cancer Metastasis Rev 35, 475–487 (2016). https://doi.org/10.1007/s10555-016-9635-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-016-9635-z

Keywords

Navigation