Skip to main content

Advertisement

Log in

MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

This review summarizes our current understanding of the role of MTA family members, particularly MTA1, with a special emphasis on prostate cancer. The interest for the role of MTA1 in prostate cancer was boosted from our initial findings of MTA1 as a component of “vicious cycle” and a member of bone metastatic signature. Analysis of human prostate tissues, xenograft and transgenic mouse models of prostate cancer, and prostate cancer cell lines has provided support for the role of MTA1 in advanced disease and its potential role in initial stages of prostate tumor progression. Recent discoveries have highlighted a critical role for MTA1 in inflammation-triggered prostate tumorigenesis, epithelial-to-mesenchymal transition, prostate cancer survival pathways, and site metastasis. Evidence for MTA1 as an upstream negative regulator of tumor suppressor genes such as p53 and PTEN has also emerged. MTA1 is involved in prostate tumor angiogenesis by regulating several pro-angiogenic factors. Evidence for MTA1 as a prognostic marker for aggressive prostate cancer and disease recurrence has been described. Importantly, pharmacological dietary agents, namely resveratrol and its analogs, are potentially applicable to prostate cancer prevention, treatment, and control of cancer progression due to their potent inhibitory effects on MTA proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Seminars in Oncology, 30(5 Suppl 16), 30–37.

    CAS  PubMed  Google Scholar 

  2. Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. [Review]. Clinical and Experimental Metastasis, 26(3), 215–227. doi:10.1007/s10585-008-9233-8.

    CAS  PubMed  Google Scholar 

  3. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.

    CAS  PubMed  Google Scholar 

  4. Reddy, S. D., Pakala, S. B., Molli, P. R., Sahni, N., Karanam, N. K., Mudvari, P., et al. (2012). Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 287(33), 27843–27850. doi:10.1074/jbc.M112.348474.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Cell, 113(2), 207–219.

    CAS  PubMed  Google Scholar 

  6. Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. [Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 278(43), 42560–42568. doi:10.1074/jbc.M302955200.

    CAS  PubMed  Google Scholar 

  7. Simpson, A., Uitto, J., Rodeck, U., & Mahoney, M. G. (2001). Differential expression and subcellular distribution of the mouse metastasis-associated proteins Mta1 and Mta3. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Gene, 273(1), 29–39.

    CAS  PubMed  Google Scholar 

  8. Kai, L., Samuel, S. K., & Levenson, A. S. (2010). Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. [Research Support, Non-U.S. Gov’t]. International Journal of Cancer, 126(7), 1538–1548. doi:10.1002/ijc.24928.

    CAS  Google Scholar 

  9. Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 16(4), 929–935.

    CAS  PubMed  Google Scholar 

  10. Moon, H. E., Cheon, H., & Lee, M. S. (2007). Metastasis-associated protein 1 inhibits p53-induced apoptosis. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 18(5), 1311–1314.

    CAS  PubMed  Google Scholar 

  11. Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. [Research Support, Non-U.S. Gov′t]. EMBO Journal, 25(6), 1231–1241. doi:10.1038/sj.emboj.7601025.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., et al. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Molecular Endocrinology, 20(9), 2020–2035. doi:10.1210/me.2005-0063.

    CAS  PubMed  Google Scholar 

  13. Kai, L., Wang, J., Ivanovic, M., Chung, Y. T., Laskin, W. B., Schulze-Hoepfner, F., et al. (2011). Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). [Research Support, Non-U.S. Gov′t]. Prostate, 71(3), 268–280. doi:10.1002/pros.21240.

    CAS  PubMed  Google Scholar 

  14. Dias, S. J., Zhou, X., Ivanovic, M., Gailey, M. P., Dhar, S., Zhang, L., et al. (2013). Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in African Americans. [Multicenter Study]. Science Reports, 3, 2331. doi:10.1038/srep02331.

    Google Scholar 

  15. Hofer, M. D., Tapia, C., Browne, T. J., Mirlacher, M., Sauter, G., & Rubin, M. A. (2006). Comprehensive analysis of the expression of the metastasis-associated gene 1 in human neoplastic tissue. Archives of Pathology and Laboratory Medicine, 130(7), 989–996. doi:10.1043/1543–2165(2006)130[989:CAOTEO]2.0.CO;2.

    CAS  PubMed  Google Scholar 

  16. Martin, M. D., Hilsenbeck, S. G., Mohsin, S. K., Hopp, T. A., Clark, G. M., Osborne, C. K., et al. (2006). Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Breast Cancer Research and Treatment, 95(1), 7–12. doi:10.1007/s10549-005-9016-8.

    CAS  PubMed  Google Scholar 

  17. Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. [Research Support, Non-U.S. Gov′t]. Cancer Science, 97(5), 374–379. doi:10.1111/j.1349-7006.2006.00186.x.

    CAS  PubMed  Google Scholar 

  18. Kawasaki, G., Yanamoto, S., Yoshitomi, I., Yamada, S., & Mizuno, A. (2008). Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. [Comparative Study]. International Journal of Oral and Maxillofacial Surgery, 37(11), 1039–1046. doi:10.1016/j.ijom.2008.05.020.

    CAS  PubMed  Google Scholar 

  19. Balasenthil, S., Broaddus, R. R., & Kumar, R. (2006). Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Human Pathology, 37(6), 656–661. doi:10.1016/j.humpath.2006.01.024.

    CAS  PubMed  Google Scholar 

  20. Prisco, M. G., Zannoni, G. F., De Stefano, I., Vellone, V. G., Tortorella, L., Fagotti, A., et al. (2012). Prognostic role of metastasis tumor antigen 1 in patients with ovarian cancer: a clinical study. Human Pathology, 43(2), 282–288. doi:10.1016/j.humpath.2011.05.002.

    CAS  PubMed  Google Scholar 

  21. Cheng, C. W., Liu, Y. F., Yu, J. C., Wang, H. W., Ding, S. L., Hsiung, C. N., et al. (2012). Prognostic significance of cyclin D1, beta-catenin, and MTA1 in patients with invasive ductal carcinoma of the breast. [Research Support, Non-U.S. Gov′t]. Annals of Surgical Oncology, 19(13), 4129–4139. doi:10.1245/s10434-012-2541-x.

    PubMed  Google Scholar 

  22. Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. [Research Support, U.S. Gov′t, Non-P.H.S. Research Support, U.S. Gov′t, P.H.S.]. Cancer Research, 64(3), 825–829.

    CAS  PubMed  Google Scholar 

  23. Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., et al. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. [Research Support, N.I.H., Intramural]. PLoS ONE, 8(3), e57542. doi:10.1371/journal.pone.0057542.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Wang, H., Fan, L., Wei, J., Weng, Y., Zhou, L., Shi, Y., et al. (2012). Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. [Research Support, Non-U.S. Gov′t]. PLoS ONE, 7(12), e46888. doi:10.1371/journal.pone.0046888.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Wallace, T. A., Prueitt, R. L., Yi, M., Howe, T. M., Gillespie, J. W., Yfantis, H. G., et al. (2008). Tumor immunobiological differences in prostate cancer between African-American and European-American men. [Research Support, N.I.H., Intramural]. Cancer Research, 68(3), 927–936. doi:10.1158/0008-5472.CAN-07-2608.

    CAS  PubMed  Google Scholar 

  26. Timofeeva, O. A., Zhang, X., Ressom, H. W., Varghese, R. S., Kallakury, B. V., Wang, K., et al. (2009). Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. [Comparative Study Research Support, N.I.H., Extramural]. International Journal of Oncology, 35(4), 751–760.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Irizarry, R. A., Ooi, S. L., Wu, Z., & Boeke, J. D. (2003). Use of mixture models in a microarray-based screening procedure for detecting differentially represented yeast mutants. Stat Appl Genet Mol Biol, 2, Article1, doi:10.2202/1544-6115.1002.

  28. Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. [Research Support, Non-U.S. Gov′t]. Nature, 412(6849), 822–826. doi:10.1038/35090585.

    CAS  PubMed  Google Scholar 

  29. Abbas, A., & Gupta, S. (2008). The role of histone deacetylases in prostate cancer. [Research Support, N.I.H., Extramural Review]. Epigenetics, 3(6), 300–309.

    PubMed Central  PubMed  Google Scholar 

  30. Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. [Review]. Nature Reviews Cancer, 6(1), 38–51. doi:10.1038/nrc1779.

    CAS  PubMed  Google Scholar 

  31. Xu, W. S., Parmigiani, R. B., & Marks, P. A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Review]. Oncogene, 26(37), 5541–5552. doi:10.1038/sj.onc.1210620.

    CAS  PubMed  Google Scholar 

  32. Nair, S. S., Li, D. Q., & Kumar, R. (2013). A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Molecular Cell, 49(4), 704–718. doi:10.1016/j.molcel.2012.12.016.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Sankaran, D., Pakala, S. B., Nair, V. S., Sirigiri, D. N., Cyanam, D., Ha, N. H., et al. (2012). Mechanism of MTA1 protein overexpression-linked invasion: MTA1 regulation of hyaluronan-mediated motility receptor (HMMR) expression and function. [Research Support, N.I.H., Extramural Retracted Publication]. Journal of Biological Chemistry, 287(8), 5483–5491. doi:10.1074/jbc.M111.324632.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature Cell Biology, 3(1), 30–37. doi:10.1038/35050532.

    CAS  PubMed  Google Scholar 

  35. Marzook, H., Li, D. Q., Nair, V. S., Mudvari, P., Reddy, S. D., Pakala, S. B., et al. (2012). Metastasis-associated protein 1 drives tumor cell migration and invasion through transcriptional repression of RING finger protein 144A. Journal of Biological Chemistry, 287(8), 5615–5626. doi:10.1074/jbc.M111.314088.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Molli, P. R., Singh, R. R., Lee, S. W., & Kumar, R. (2008). MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. [Research Support, N.I.H., Extramural]. Oncogene, 27(14), 1971–1980. doi:10.1038/sj.onc.1210839.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 285(13), 10044–10052. doi:10.1074/jbc.M109.079095.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Manavathi, B., Peng, S., Rayala, S. K., Talukder, A. H., Wang, M. H., Wang, R. A., et al. (2007). Repression of Six3 by a corepressor regulates rhodopsin expression. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13128–13133. doi:10.1073/pnas.0705878104.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Journal of Biological Chemistry, 282(3), 1529–1533. doi:10.1074/jbc.R600029200.

    CAS  PubMed  Google Scholar 

  40. Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. (2010). Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. [Research Support, N.I.H., Extramural]. EMBO Reports, 11(9), 691–697. doi:10.1038/embor.2010.99.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Yan, C., Wang, H., Toh, Y., & Boyd, D. D. (2003). Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. [Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 278(4), 2309–2316. doi:10.1074/jbc.M210369200.

    CAS  PubMed  Google Scholar 

  42. Zhang, H., Singh, R. R., Talukder, A. H., & Kumar, R. (2006). Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Genes and Development, 20(21), 2943–2948. doi:10.1101/gad.1461706.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. [Research Support, N.I.H., Extramural]. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675. doi:10.1073/pnas.0601989103.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Balasenthil, S., Gururaj, A. E., Talukder, A. H., Bagheri-Yarmand, R., Arrington, T., Haas, B. J., et al. (2007). Identification of Pax5 as a target of MTA1 in B-cell lymphomas. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Cancer Research, 67(15), 7132–7138. doi:10.1158/0008-5472.CAN-07-0750.

    CAS  PubMed  Google Scholar 

  45. Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature, 408(6810), 377–381. doi:10.1038/35042612.

    CAS  PubMed  Google Scholar 

  46. Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Research, 66(3), 1277–1281. doi:10.1158/0008-5472.CAN-05-3632.

    CAS  PubMed  Google Scholar 

  47. Saito, Y., Liang, G., Egger, G., Friedman, J. M., Chuang, J. C., Coetzee, G. A., et al. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Cell, 9(6), 435–443. doi:10.1016/j.ccr.2006.04.020.

    CAS  PubMed  Google Scholar 

  48. Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. [Research Support, Non-U.S. Gov′t Review]. Nature Reviews Molecular Cell Biology, 10(2), 126–139. doi:10.1038/nrm2632.

    CAS  PubMed  Google Scholar 

  49. Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Nature Genetics, 38(2), 228–233. doi:10.1038/ng1725.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Wang, H., Wu, J., Meng, X., Ying, X., Zuo, Y., Liu, R., et al. (2011). MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. [Research Support, Non-U.S. Gov′t]. Carcinogenesis, 32(7), 1033–1042. doi:10.1093/carcin/bgr081.

    CAS  PubMed  Google Scholar 

  51. Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. [Research Support, N.I.H., Extramural]. Cancer Research, 69(14), 5639–5642. doi:10.1158/0008-5472.CAN-09-0898.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Zhou, H., Xu, X., Xun, Q., Yu, D., Ling, J., Guo, F., et al. (2012). microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 27(3), 807–812. doi:10.3892/or.2011.1574.

    CAS  PubMed  Google Scholar 

  53. Xia, Y., Chen, Q., Zhong, Z., Xu, C., Wu, C., Liu, B., et al. (2013). Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1. Cellular Physiology and Biochemistry, 32(2), 476–485. doi:10.1159/000354452.

    CAS  PubMed  Google Scholar 

  54. Li, Y., Chao, Y., Fang, Y., Wang, J., Wang, M., Zhang, H., et al. (2013). MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. [Research Support, Non-U.S. Gov′t]. J Exp Clin Cancer Res, 32, 33. doi:10.1186/1756-9966-32–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Zhu, X., Zhang, X., Wang, H., Song, Q., Zhang, G., Yang, L., et al. (2012). MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 28(1), 218–224. doi:10.3892/or.2012.1770.

    CAS  PubMed  Google Scholar 

  56. Li, Y., Vandenboom, T. G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Cancer Research, 70(4), 1486–1495. doi:10.1158/0008-5472.CAN-09-2792.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2013). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biol, doi:10.1007/s13277-013-1460-1

  58. Dhar, S., Hicks, C., & Levenson, A. S. (2011). Resveratrol and prostate cancer: promising role for microRNAs. [Research Support, Non-U.S. Gov′t]. Molecular Nutrition & Food Research, 55(8), 1219–1229. doi:10.1002/mnfr.201100141.

    CAS  Google Scholar 

  59. Giri, D., & Ittmann, M. (1999). Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. [Research Support, U.S. Gov′t, Non-P.H.S.]. Human Pathology, 30(4), 419–424.

    CAS  PubMed  Google Scholar 

  60. Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Genes and Development, 14(4), 391–396.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hsieh, A. C., Liu, Y., Edlind, M. P., Ingolia, N. T., Janes, M. R., Sher, A., et al. (2012). The translational landscape of mTOR signalling steers cancer initiation and metastasis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Nature, 485(7396), 55–61. doi:10.1038/nature10912.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Li, W., Zhang, J., Liu, X., Xu, R., & Zhang, Y. (2007). Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. [Research Support, Non-U.S. Gov′t]. Cell and Tissue Research, 329(2), 351–362. doi:10.1007/s00441-007-0412-8.

    CAS  PubMed  Google Scholar 

  63. Li, W., Liu, X. P., Xu, R. J., & Zhang, Y. Q. (2007). Immunolocalization assessment of metastasis-associated protein 1 in human and mouse mature testes and its association with spermatogenesis. [Comparative Study Research Support, Non-U.S. Gov′t]. Asian Journal of Andrology, 9(3), 345–352. doi:10.1111/j.1745-7262.2007.00245.x.

    CAS  PubMed  Google Scholar 

  64. Thakur, M. K., & Ghosh, S. (2009). Interaction of estrogen receptor alpha transactivation domain with MTA1 decreases in old mouse brain. [Research Support, Non-U.S. Gov′t]. Journal of Molecular Neuroscience, 37(3), 269–273. doi:10.1007/s12031-008-9131-1.

    CAS  PubMed  Google Scholar 

  65. Reddy, S. D., Rayala, S. K., Ohshiro, K., Pakala, S. B., Kobori, N., Dash, P., et al. (2011). Multiple coregulatory control of tyrosine hydroxylase gene transcription. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4200–4205. doi:10.1073/pnas.1101193108.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Hung, H., Kohnken, R., & Svaren, J. (2012). The nucleosome remodeling and deacetylase chromatin remodeling (NuRD) complex is required for peripheral nerve myelination. [Comparative Study Research Support, N.I.H., Extramural]. Journal of Neuroscience, 32(5), 1517–1527. doi:10.1523/JNEUROSCI.2895-11.2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597. doi:10.1074/jbc.M110.139469.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Li, W., Wu, Z. Q., Zhao, J., Guo, S. J., Li, Z., Feng, X., et al. (2011). Transient protection from heat-stress induced apoptotic stimulation by metastasis-associated protein 1 in pachytene spermatocytes. [Research Support, Non-U.S. Gov′t]. PLoS ONE, 6(10), e26013. doi:10.1371/journal.pone.0026013.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Li, W., Zhu, H., Bao, W., Fu, H., Li, Z., Liu, X., et al. (2008). Involvement of metastasis tumor antigen 1 in hepatic regeneration and proliferation. [Research Support, Non-U.S. Gov′t]. Cellular Physiology and Biochemistry, 22(1–4), 315–326. doi:10.1159/000149810.

    CAS  PubMed  Google Scholar 

  70. Roche, A. E., Bassett, B. J., Samant, S. A., Hong, W., Blobel, G. A., & Svensson, E. C. (2008). The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. [Research Support, N.I.H., Extramural]. Journal of Molecular and Cellular Cardiology, 44(2), 352–360. doi:10.1016/j.yjmcc.2007.10.023.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Karantanos, T., & Thompson, T. C. (2013). GEMMs shine a light on resistance to androgen deprivation therapy for prostate cancer. [Research Support, N.I.H., Extramural]. Cancer Cell, 24(1), 11–13. doi:10.1016/j.ccr.2013.06.007.

    CAS  PubMed  Google Scholar 

  72. Karantanos, T., Corn, P. G., & Thompson, T. C. (2013). Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. [Research Support, N.I.H., Extramural Review]. Oncogene, 32(49), 5501–5511. doi:10.1038/onc.2013.206.

    CAS  PubMed  Google Scholar 

  73. Fu, M., Wang, C., Reutens, A. T., Wang, J., Angeletti, R. H., Siconolfi-Baez, L., et al. (2000). p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 275(27), 20853–20860. doi:10.1074/jbc.M000660200.

    CAS  PubMed  Google Scholar 

  74. Fu, M., Wang, C., Wang, J., Zhang, X., Sakamaki, T., Yeung, Y. G., et al. (2002). Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. [In Vitro Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Molecular Cell. Biology, 22(10), 3373–3388.

    CAS  Google Scholar 

  75. Guo, Z., Dai, B., Jiang, T., Xu, K., Xie, Y., Kim, O., et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Cell, 10(4), 309–319. doi:10.1016/j.ccr.2006.08.021.

    CAS  PubMed  Google Scholar 

  76. Dai, B., Chen, H., Guo, S., Yang, X., Linn, D. E., Sun, F., et al. (2010). Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Research, 70(13), 5587–5596. doi:10.1158/0008-5472.CAN-09-4610.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Mahajan, K., Challa, S., Coppola, D., Lawrence, H., Luo, Y., Gevariya, H., et al. (2010). Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. [Research Support, Non-U.S. Gov′t]. Prostate, 70(12), 1274–1285. doi:10.1002/pros.21163.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Mahajan, K., & Mahajan, N. P. (2010). Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. [Research Support, Non-U.S. Gov′t Review]. Journal of Cellular Physiology, 224(2), 327–333. doi:10.1002/jcp.22162.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Montie, H. L., Pestell, R. G., & Merry, D. E. (2011). SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Journal of Neuroscience, 31(48), 17425–17436. doi:10.1523/JNEUROSCI.3958-11.2011.

    CAS  PubMed  Google Scholar 

  80. Fu, M., Rao, M., Wang, C., Sakamaki, T., Wang, J., Di Vizio, D., et al. (2003). Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. [In Vitro Research Support, U.S. Gov′t, P.H.S.]. Molecular Cell. Biology, 23(23), 8563–8575.

    CAS  Google Scholar 

  81. Zhang, S., Li, W., Zhu, C., Wang, X., Li, Z., Zhang, J., et al. (2012). Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. [Research Support, Non-U.S. Gov′t]. Journal of Biological Chemistry, 287(48), 40471–40483. doi:10.1074/jbc.M112.383802.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Sfanos, K. S., & De Marzo, A. M. (2012). Prostate cancer and inflammation: the evidence. [Review]. Histopathology, 60(1), 199–215. doi:10.1111/j.1365-2559.2011.04033.x.

    PubMed Central  PubMed  Google Scholar 

  83. De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C. G., et al. (2007). Inflammation in prostate carcinogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S. Review]. Nature Reviews Cancer, 7(4), 256–269. doi:10.1038/nrc2090.

    PubMed Central  PubMed  Google Scholar 

  84. Bostwick, D. G., & Cheng, L. (2012). Precursors of prostate cancer. [Review]. Histopathology, 60(1), 4–27. doi:10.1111/j.1365-2559.2011.04007.x.

    PubMed  Google Scholar 

  85. Putzi, M. J., & De Marzo, A. M. (2001). Prostate pathology: histologic and molecular perspectives. [Research Support, U.S. Gov′t, P.H.S. Review]. Hematology/Oncology Clinics of North America, 15(3), 407–421.

    CAS  PubMed  Google Scholar 

  86. Bohonowych, J. E., Hance, M. W., Nolan, K. D., Defee, M., Parsons, C. H., & Isaacs, J. S. (2014). Extracellular Hsp90 mediates an NF-kappaB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Prostate, 74(4), 395–407. doi:10.1002/pros.22761.

    CAS  PubMed  Google Scholar 

  87. Fujioka, T., Arakawa, T., Shimoyama, T., Yoshikawa, T., Itoh, M., Asaka, M., et al. (2003). Effects of rebamipide, a gastro-protective drug on the Helicobacter pylori status and inflammation in the gastric mucosa of patients with gastric ulcer: a randomized double-blind placebo-controlled multicentre trial. [Clinical Trial Multicenter Study Randomized Controlled Trial]. Alimentary Pharmacology & Therapeutics, 18(1), 146–152.

    CAS  Google Scholar 

  88. Saadi-Thiers, K., Huck, O., Simonis, P., Tilly, P., Fabre, J. E., Tenenbaum, H., et al. (2013). Periodontal and systemic responses in various mice models of experimental periodontitis: respective roles of inflammation duration and Porphyromonas gingivalis infection. Journal of Periodontology, 84(3), 396–406. doi:10.1902/jop.2012.110540.

    CAS  PubMed  Google Scholar 

  89. Senftleben, U., & Karin, M. (2002). The IKK/NF-kappa B pathway. [Review]. Critical Care Medicine, 30(1 Suppl), S18–S26.

    CAS  Google Scholar 

  90. Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 285(43), 32787–32792. doi:10.1074/jbc.M110.151340.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 286(9), 7132–7138. doi:10.1074/jbc.M110.199273.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, R. D., Xia, W., Hung, M. C., Sarin, S. K., et al. (2010). NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. [Research Support, N.I.H., Extramural]. Oncogene, 29(8), 1179–1189. doi:10.1038/onc.2009.404.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Chen, L., Zhang, Q., Chang, W., Du, Y., Zhang, H., & Cao, G. (2012). Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. [Research Support, Non-U.S. Gov′t]. European Journal of Cancer, 48(13), 1977–1987. doi:10.1016/j.ejca.2012.01.015.

    CAS  PubMed  Google Scholar 

  94. Ryu, S. H., Chung, Y. H., Lee, H., Kim, J. A., Shin, H. D., Min, H. J., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936. doi:10.1002/hep.22124.

    PubMed  Google Scholar 

  95. Salot, S., & Gude, R. (2013). MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. European Journal of Cancer, 49(2), 492–499. doi:10.1016/j.ejca.2012.06.019.

    CAS  PubMed  Google Scholar 

  96. Nagakawa, O., Murakami, K., Yamaura, T., Fujiuchi, Y., Murata, J., Fuse, H., et al. (2000). Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. [Research Support, Non-U.S. Gov′t]. Cancer Letters, 155(2), 173–179.

    CAS  PubMed  Google Scholar 

  97. Sehgal, I., & Thompson, T. C. (1999). Novel regulation of type IV collagenase (matrix metalloproteinase-9 and −2) activities by transforming growth factor-beta1 in human prostate cancer cell lines. [Research Support, U.S. Gov′t, P.H.S.]. Molecular Biology of the Cell, 10(2), 407–416.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973. doi:10.1073/pnas.0502330102.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Bruning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. [Research Support, Non-U.S. Gov′t]. Cancer Biology and Therapy, 7(9), 1460–1467.

    CAS  PubMed  Google Scholar 

  100. Pakala, S. B., Singh, K., Reddy, S. D., Ohshiro, K., Li, D. Q., Mishra, L., et al. (2011). TGF-beta1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. [Research Support, N.I.H., Extramural]. Oncogene, 30(19), 2230–2241. doi:10.1038/onc.2010.608.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Pakala, S. B., Rayala, S. K., Wang, R. A., Ohshiro, K., Mudvari, P., Reddy, S. D., et al. (2013). MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. [Research Support, N.I.H., Extramural]. Cancer Research, 73(12), 3761–3770. doi:10.1158/0008-5472.CAN-12-3998.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Seda Tuncay Cagatay, I. C., Savas, B., & Banerjee, S. (2013). MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumor Biology, 34, 1189–1204.

    PubMed  Google Scholar 

  103. Wei Zhu, M.-Y. C., Tong, Z.-T., Dong, S.-S., Mai, S.-J., Liao, Y.-J., Bian, X.-W., Marie, C., Lin, H.-F. K., Zeng, Y.-X., Guan, X.-Y., & Xie, D. (2012). Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial to mesenchymal transition. Gut, 61, 562–575.

    PubMed  Google Scholar 

  104. Yan, D., Avtanski, D., Saxena, N. K., & Sharma, D. (2012). Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires beta-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 287(11), 8598–8612. doi:10.1074/jbc.M111.322800.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Folkman, J., Watson, K., Ingber, D., & Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature, 339(6219), 58–61. doi:10.1038/339058a0.

    CAS  PubMed  Google Scholar 

  106. Fidler, I. J., & Ellis, L. M. (1994). The implications of angiogenesis for the biology and therapy of cancer metastasis. [Comment Review]. Cell, 79(2), 185–188.

    CAS  PubMed  Google Scholar 

  107. Brawer, M. K., Bigler, S. A., & Deering, R. E. (1992). Quantitative morphometric analysis of the microcirculation in prostate carcinoma. [Research Support, U.S. Gov′t, Non-P.H.S.]. Journal of Cellular Biochemistry Supplement, 16H, 62–64.

    CAS  PubMed  Google Scholar 

  108. Bostwick, D. G., Wheeler, T. M., Blute, M., Barrett, D. M., MacLennan, G. T., Sebo, T. J., et al. (1996). Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. [Multicenter Study Research Support, Non-U.S. Gov′t]. Urology, 48(1), 47–57.

    CAS  PubMed  Google Scholar 

  109. de la Taille, A., Katz, A. E., Bagiella, E., Buttyan, R., Sharir, S., Olsson, C. A., et al. (2000). Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. [Comparative Study Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. American Journal of Clinical Pathology, 113(4), 555–562. doi:10.1309/02W2-KE50-PKEF-G2G4.

    PubMed  Google Scholar 

  110. Fidler, I. J. (2001). Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenvironment. [Comment Editorial Research Support, U.S. Gov′t, P.H.S.]. Journal of the National Cancer Institute, 93(14), 1040–1041.

    CAS  PubMed  Google Scholar 

  111. Nicholson, B., Schaefer, G., & Theodorescu, D. (2001). Angiogenesis in prostate cancer: biology and therapeutic opportunities. [Review]. Cancer and Metastasis Reviews, 20(3–4), 297–319.

    CAS  PubMed  Google Scholar 

  112. Borgstrom, P., Bourdon, M. A., Hillan, K. J., Sriramarao, P., & Ferrara, N. (1998). Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. [Research Support, U.S. Gov′t, P.H.S.]. Prostate, 35(1), 1–10.

    CAS  PubMed  Google Scholar 

  113. Noordzij, M. A., van der Kwast, T. H., van Steenbrugge, G. J., Hop, W. J., & Schroder, F. H. (1995). The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. [Comparative Study]. International Journal of Cancer, 62(3), 252–258.

    CAS  Google Scholar 

  114. Joseph, I. B., & Isaacs, J. T. (1997). Potentiation of the antiangiogenic ability of linomide by androgen ablation involves down-regulation of vascular endothelial growth factor in human androgen-responsive prostatic cancers. [Research Support, U.S. Gov′t, P.H.S.]. Cancer Research, 57(6), 1054–1057.

    CAS  PubMed  Google Scholar 

  115. Li, J., Perrella, M. A., Tsai, J. C., Yet, S. F., Hsieh, C. M., Yoshizumi, M., et al. (1995). Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 270(1), 308–312.

    CAS  PubMed  Google Scholar 

  116. Du, B., Yang, Z. Y., Zhong, X. Y., Fang, M., Yan, Y. R., Qi, G. L., et al. (2011). Metastasis-associated protein 1 induces VEGF-C and facilitates lymphangiogenesis in colorectal cancer. [Research Support, Non-U.S. Gov′t]. World Journal of Gastroenterology, 17(9), 1219–1226. doi:10.3748/wjg.v17.i9.1219.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. (2013). Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. [Research Support, Non-U.S. Gov′t]. World Journal of Surgery, 37(4), 792–798. doi:10.1007/s00268-012-1898-0.

    PubMed  Google Scholar 

  118. Powell, I. J., & Meyskens, F. L., Jr. (2001). African American men and hereditary/familial prostate cancer: Intermediate-risk populations for chemoprevention trials. [Comparative Study]. Urology, 57(4 Suppl 1), 178–181.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Defense Prostate Cancer Research Program under award # W81XWH-13-1-0370 to ASL. Views and opinions of, and endorsements by the author (s) do not reflect those of the US Army of the Department of Defense. We are grateful to Dr. Richard L Summers (UMMC) for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anait S. Levenson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levenson, A.S., Kumar, A. & Zhang, X. MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities. Cancer Metastasis Rev 33, 929–942 (2014). https://doi.org/10.1007/s10555-014-9519-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9519-z

Keywords

Navigation