Skip to main content

Advertisement

Log in

Biological insights into effective and antagonistic combinations of targeted agents with chemotherapy in solid tumors

  • Clinical
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The potential for synergistic interactions between anticancer drugs has been used to justify combinations of agents in clinical trials. However, most combinations of targeted agents and chemotherapies have been tested in the clinic without previous systematic evaluation of their potential benefit. Preclinical studies may help in the identification of synergistic or antagonistic interactions. For antineoplastic therapies, these studies may reveal synergy or antagonism of the drug combinations. Synergy occurs when two agents given together produce higher antitumoral activity than the sum of each individual drug. This represents the ideal setting for the development of combinations of targeted agents and chemotherapies. On the other side, certain drug combinations have shown adverse results, indicative of an antagonistic effect. In this article, we review the preclinical molecular bases that justify approved combinations of targeted agents with chemotherapy including examples of synergistic and antagonistic combinations. We also discuss scenarios for rational associations of targeted agents based on biological data and propose strategies that may improve the success of combinations of anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dancey, J. E., & Chen, H. X. (2006). Strategies for optimizing combinations of molecularly targeted anticancer agents. Nature Reviews Drug Discovery, 5, 649–659.

    PubMed  CAS  Google Scholar 

  2. Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery, 3, 673–683.

    PubMed  CAS  Google Scholar 

  3. Ocana, A., Pandiella, A., Siu, L. L., & Tannock, I. F. (2010). Preclinical development of molecular-targeted agents for cancer. Nature Reviews. Clinical Oncology, 8, 200–209.

    PubMed  Google Scholar 

  4. Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Research, 70, 440–446.

    PubMed  CAS  Google Scholar 

  5. Ocana, A., & Pandiella, A. (2013). Targeting HER receptors in cancer. Current Pharmaceutical Design, 19, 808–817.

    PubMed  CAS  Google Scholar 

  6. Montero, J. C., Rodriguez-Barrueco, R., Ocana, A., et al. (2008). Neuregulins and cancer. Clinical Cancer Research, 14, 3237–3241.

    PubMed  CAS  Google Scholar 

  7. Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5, 341–354.

    PubMed  CAS  Google Scholar 

  8. Ocana, A., Amir, E., Seruga, B., et al. (2013). The evolving landscape of protein kinases in breast cancer: clinical implications. Cancer Treatment Reviews, 39, 68–76.

    PubMed  CAS  Google Scholar 

  9. Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature Reviews Cancer, 9, 463–475.

    PubMed  CAS  Google Scholar 

  10. Ocana, A., Vera-Badillo, F., Seruga, B., et al. (2013). HER3 overexpression and survival in solid tumors: a meta-analysis. Journal of the National Cancer Institute, 105, 266–273.

    PubMed  CAS  Google Scholar 

  11. Reschke, M., Mihic-Probst, D., van der Horst, E. H., et al. (2008). HER3 is a determinant for poor prognosis in melanoma. Clinical Cancer Research, 14, 5188–5197.

    PubMed  CAS  Google Scholar 

  12. Ocana, A., & Amir, E. (2009). Irreversible pan-ErbB tyrosine kinase inhibitors and breast cancer: current status and future directions. Cancer Treatment Reviews, 35, 685–691.

    PubMed  CAS  Google Scholar 

  13. Ocana, A., & Pandiella, A. (2008). Identifying breast cancer druggable oncogenic alterations: lessons learned and future targeted options. Clinical Cancer Research, 14, 961–970.

    PubMed  CAS  Google Scholar 

  14. Kelland, L. (2007). The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, 7, 573–584.

    PubMed  CAS  Google Scholar 

  15. Tanaka, T., Munshi, A., Brooks, C., et al. (2008). Gefitinib radiosensitizes non-small cell lung cancer cells by suppressing cellular DNA repair capacity. Clinical Cancer Research, 14, 1266–1273.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Chinnaiyan, P., Huang, S., Vallabhaneni, G., et al. (2005). Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Research, 65, 3328–3335.

    PubMed  CAS  Google Scholar 

  17. Dittmann, K., Mayer, C., Fehrenbacher, B., et al. (2005). Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. Journal of Biological Chemistry, 280, 31182–31189.

    PubMed  CAS  Google Scholar 

  18. Li, L., Wang, H., Yang, E. S., et al. (2008). Erlotinib attenuates homologous recombinational repair of chromosomal breaks in human breast cancer cells. Cancer Research, 68, 9141–9146.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Huang, S. M., & Harari, P. M. (2000). Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clinical Cancer Research, 6, 2166–2174.

    PubMed  CAS  Google Scholar 

  20. Huang, S. M., Bock, J. M., & Harari, P. M. (1999). Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Research, 59, 1935–1940.

    PubMed  CAS  Google Scholar 

  21. Boone, J. J., Bhosle, J., Tilby, M. J., et al. (2009). Involvement of the HER2 pathway in repair of DNA damage produced by chemotherapeutic agents. Molecular Cancer Therapeutics, 8, 3015–3023.

    PubMed  CAS  Google Scholar 

  22. Prewett, M., Deevi, D. S., Bassi, R., et al. (2007). Tumors established with cell lines selected for oxaliplatin resistance respond to oxaliplatin if combined with cetuximab. Clinical Cancer Research, 13, 7432–7440.

    PubMed  CAS  Google Scholar 

  23. Bang, Y. J., Van Cutsem, E., Feyereislova, A., et al. (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 376, 687–697.

    PubMed  CAS  Google Scholar 

  24. Raben, D., Helfrich, B., Chan, D. C., et al. (2005). The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clinical Cancer Research, 11, 795–805.

    PubMed  CAS  Google Scholar 

  25. Pirker, R., Pereira, J. R., Szczesna, A., et al. (2009). Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet, 373, 1525–1531.

    PubMed  CAS  Google Scholar 

  26. Robert, N., Leyland-Jones, B., Asmar, L., et al. (2006). Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. Journal of Clinical Oncology, 24, 2786–2792.

    PubMed  CAS  Google Scholar 

  27. Valero, V., Forbes, J., Pegram, M. D., et al. (2011). Multicenter phase III randomized trial comparing docetaxel and trastuzumab with docetaxel, carboplatin, and trastuzumab as first-line chemotherapy for patients with HER2-gene-amplified metastatic breast cancer (BCIRG 007 study): two highly active therapeutic regimens. Journal of Clinical Oncology, 29, 149–156.

    PubMed  CAS  Google Scholar 

  28. Cohen, H. (2009). Drug Topics Red Book™ (113th ed.). Montvale, NJ: Thomson Healthcare/Thomson PDR.

    Google Scholar 

  29. Prewett, M. C., Hooper, A. T., Bassi, R., et al. (2002). Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clinical Cancer Research, 8, 994–1003.

    PubMed  CAS  Google Scholar 

  30. Van Cutsem, E., Kohne, C. H., Hitre, E., et al. (2009). Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. New England Journal of Medicine, 360, 1408–1417.

    PubMed  Google Scholar 

  31. Cunningham, D., Humblet, Y., Siena, S., et al. (2004). Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. New England Journal of Medicine, 351, 337–345.

    PubMed  CAS  Google Scholar 

  32. Baselga, J., Norton, L., Albanell, J., et al. (1998). Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Research, 58, 2825–2831.

    PubMed  CAS  Google Scholar 

  33. Baselga, J., Norton, L., Masui, H., et al. (1993). Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. Journal of the National Cancer Institute, 85, 1327–1333.

    PubMed  CAS  Google Scholar 

  34. Pegram, M. D., Konecny, G. E., O’Callaghan, C., et al. (2004). Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. Journal of the National Cancer Institute, 96, 739–749.

    PubMed  CAS  Google Scholar 

  35. Slamon, D. J., Leyland-Jones, B., Shak, S., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344, 783–792.

    PubMed  CAS  Google Scholar 

  36. Lee, S., Yang, W., Lan, K. H., et al. (2002). Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Research, 62, 5703–5710.

    PubMed  CAS  Google Scholar 

  37. Geyer, C. E., Forster, J., Lindquist, D., et al. (2006). Lapatinib plus capecitabine for HER2-positive advanced breast cancer. New England Journal of Medicine, 355, 2733–2743.

    PubMed  CAS  Google Scholar 

  38. Morgan, M. A., Parsels, L. A., Kollar, L. E., et al. (2008). The combination of epidermal growth factor receptor inhibitors with gemcitabine and radiation in pancreatic cancer. Clinical Cancer Research, 14, 5142–5149.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Moore, M. J., Goldstein, D., Hamm, J., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966.

    PubMed  CAS  Google Scholar 

  40. McMillin, D. W., Delmore, J., Weisberg, E., et al. (2010). Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nature Medicine, 16, 483–489.

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Tredan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99, 1441–1454.

    PubMed  CAS  Google Scholar 

  42. Ocio, E. M., Maiso, P., Chen, X., et al. (2009). Zalypsis: a novel marine-derived compound with potent antimyeloma activity that reveals high sensitivity of malignant plasma cells to DNA double-strand breaks. Blood, 113, 3781–3791.

    PubMed  CAS  Google Scholar 

  43. Ferrara, N. (2005). VEGF as a therapeutic target in cancer. Oncology, 69(Suppl 3), 11–16.

    PubMed  CAS  Google Scholar 

  44. Miller, K. D., Chap, L. I., Holmes, F. A., et al. (2005). Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. Journal of Clinical Oncology, 23, 792–799.

    PubMed  CAS  Google Scholar 

  45. Miller, K., Wang, M., Gralow, J., et al. (2007). Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. New England Journal of Medicine, 357, 2666–2676.

    PubMed  CAS  Google Scholar 

  46. Miles, D. W., Chan, A., Dirix, L. Y., et al. (2010). Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. Journal of Clinical Oncology, 28, 3239–3247.

    PubMed  CAS  Google Scholar 

  47. Robert, N. J., Dieras, V., Glaspy, J., et al. (2011). RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab (B) for first-line treatment of HER2-negative locally recurrent or metastatic breast cancer (MBC). Journal of Clinical Oncology, 29, 1252–1260.

    PubMed  CAS  Google Scholar 

  48. Sweeney, C. J., Miller, K. D., Sissons, S. E., et al. (2001). The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Research, 61, 3369–3372.

    PubMed  CAS  Google Scholar 

  49. Higgins, B., Kolinsky, K., Linn, M., et al. (2007). Antitumor activity of capecitabine and bevacizumab combination in a human estrogen receptor-negative breast adenocarcinoma xenograft model. Anticancer Research, 27, 2279–2287.

    PubMed  CAS  Google Scholar 

  50. Ocana, A., Amir, E., Vera, F., et al. (2011). Addition of bevacizumab to chemotherapy for treatment of solid tumors: similar results but different conclusions. Journal of Clinical Oncology, 29, 254–256.

    PubMed  CAS  Google Scholar 

  51. Fox, W. D., Higgins, B., Maiese, K. M., et al. (2002). Antibody to vascular endothelial growth factor slows growth of an androgen-independent xenograft model of prostate cancer. Clinical Cancer Research, 8, 3226–3231.

    PubMed  CAS  Google Scholar 

  52. Hu, L., Hofmann, J., Zaloudek, C., et al. (2002). Vascular endothelial growth factor immunoneutralization plus paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. American Journal of Pathology, 161, 1917–1924.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Lee, C. G., Heijn, M., di Tomaso, E., et al. (2000). Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Research, 60, 5565–5570.

    PubMed  CAS  Google Scholar 

  54. Wildiers, H., Guetens, G., De Boeck, G., et al. (2003). Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. British Journal of Cancer, 88, 1979–1986.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–2342.

    PubMed  CAS  Google Scholar 

  56. Giantonio, B. J., Catalano, P. J., Meropol, N. J., et al. (2007). Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. Journal of Clinical Oncology, 25, 1539–1544.

    PubMed  CAS  Google Scholar 

  57. Friedman, H. S., Prados, M. D., Wen, P. Y., et al. (2009). Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. Journal of Clinical Oncology, 27, 4733–4740.

    PubMed  CAS  Google Scholar 

  58. Burger, R., Brady, M., & Bookman, M. (2011). Incorporation of bevacizumab in the primary treatment of ovarian cancer. New England Journal of Medicine, 365, 2473–2483.

    PubMed  CAS  Google Scholar 

  59. Hecht, J. R., Mitchell, E., Chidiac, T., et al. (2009). A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. Journal of Clinical Oncology, 27, 672–680.

    PubMed  CAS  Google Scholar 

  60. Tol, J., Koopman, M., Cats, A., et al. (2009). Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. New England Journal of Medicine, 360, 563–572.

    PubMed  CAS  Google Scholar 

  61. Punt, C. J., & Tol, J. (2009). More is less—combining targeted therapies in metastatic colorectal cancer. Nature Reviews Clinical Oncology, 6, 731–733.

    PubMed  CAS  Google Scholar 

  62. Ciardiello, F., Bianco, R., Damiano, V., et al. (2000). Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clinical Cancer Research, 6, 3739–3747.

    PubMed  CAS  Google Scholar 

  63. Tonra, J. R., Deevi, D. S., Corcoran, E., et al. (2006). Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clinical Cancer Research, 12, 2197–2207.

    PubMed  CAS  Google Scholar 

  64. Baselga, J., Segalla, J. G., Roche, H., et al. (2012). Sorafenib in combination with capecitabine: an oral regimen for patients with HER2-negative locally advanced or metastatic breast cancer. Journal of Clinical Oncology, 30, 1484–1491.

    PubMed  CAS  Google Scholar 

  65. Vogelstein, B., Papadopoulos, N., Velculescu, V. E., et al. (2013). Cancer genome landscapes. Science, 339, 1546–1558.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Druker, B. J., Sawyers, C. L., Kantarjian, H., et al. (2001). Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. New England Journal of Medicine, 344, 1038–1042.

    PubMed  CAS  Google Scholar 

  67. Li, D., Shimamura, T., Ji, H., et al. (2007). Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell, 12, 81–93.

    PubMed  CAS  Google Scholar 

  68. Nahta, R., Hung, M. C., & Esteva, F. J. (2004). The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Research, 64, 2343–2346.

    PubMed  CAS  Google Scholar 

  69. Xia, W., Gerard, C. M., Liu, L., et al. (2005). Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene, 24, 6213–6221.

    PubMed  CAS  Google Scholar 

  70. Stommel, J. M., Kimmelman, A. C., Ying, H., et al. (2007). Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science, 318, 287–290.

    PubMed  CAS  Google Scholar 

  71. Esparis-Ogando, A., Ocana, A., Rodriguez-Barrueco, R., et al. (2008). Synergic antitumoral effect of an IGF-IR inhibitor and trastuzumab on HER2-overexpressing breast cancer cells. Annals of Oncology, 18, 1860–1869.

    Google Scholar 

  72. Browne, B. C., Crown, J., Venkatesan, N., et al. (2011). Inhibition of IGF1R activity enhances response to trastuzumab in HER-2-positive breast cancer cells. Annals of Oncology, 22, 68–73.

    PubMed  CAS  Google Scholar 

  73. Guix, M., Faber, A. C., Wang, S. E., et al. (2008). Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. Journal of Clinical Investigation, 118, 2609–2619.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Engelman, J. A., Zejnullahu, K., Mitsudomi, T., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316, 1039–1043.

    PubMed  CAS  Google Scholar 

  75. Nazarian, R., Shi, H., Wang, Q., et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468, 973–977.

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Johannessen, C. M., Boehm, J. S., Kim, S. Y., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 468, 968–972.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Sharma, S. V., Haber, D. A., & Settleman, J. (2010). Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nature Reviews Cancer, 10, 241–253.

    PubMed  CAS  Google Scholar 

  78. Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews Cancer, 9, 302–312.

    PubMed  CAS  Google Scholar 

  79. Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6, 924–935.

    PubMed  CAS  Google Scholar 

  80. Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer, 5, 275–284.

    PubMed  CAS  Google Scholar 

  81. Axelson, H., Fredlund, E., Ovenberger, M., et al. (2005). Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Seminars in Cell and Developmental Biology, 16, 554–563.

    PubMed  CAS  Google Scholar 

  82. Ding, L., Ellis, M. J., Li, S., et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999–1005.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Gerlinger, M., Rowan, A. J., Horswell, S., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine, 366, 883–892.

    PubMed  CAS  Google Scholar 

  84. Yachida, S., Jones, S., Bozic, I., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117.

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Amir, E., Miller, N., Geddie, W., et al. (2012). Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. Journal of Clinical Oncology, 30, 587–592.

    PubMed  Google Scholar 

  86. Hunter, C., Smith, R., Cahill, D. P., et al. (2006). A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Research, 66, 3987–3991.

    PubMed  CAS  Google Scholar 

  87. Turner, N., Tutt, A., & Ashworth, A. (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nature Reviews Cancer, 4, 814–819.

    PubMed  CAS  Google Scholar 

  88. Lord, C. J., & Ashworth, A. (2008). Targeted therapy for cancer using PARP inhibitors. Current Opinion in Pharmacology, 8, 363–369.

    PubMed  CAS  Google Scholar 

  89. Roche-Lestienne, C., Soenen-Cornu, V., Grardel-Duflos, N., et al. (2002). Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood, 100, 1014–1018.

    PubMed  CAS  Google Scholar 

  90. Inukai, M., Toyooka, S., Ito, S., et al. (2006). Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Research, 66, 7854–7858.

    PubMed  CAS  Google Scholar 

  91. Ocio, E. M., Mateos, M. V., Maiso, P., et al. (2008). New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncology, 9, 1157–1165.

    PubMed  CAS  Google Scholar 

  92. Orimo, A., Gupta, P. B., Sgroi, D. C., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.

    PubMed  CAS  Google Scholar 

  93. Sharma, S. V., Haber, D. A., & Settleman, J. (2010). Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nature Reviews Cancer, 10, 241–253.

    PubMed  CAS  Google Scholar 

  94. Caponigro, G., & Sellers, W. R. (2011). Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Reviews Drug Discovery, 10, 179–187.

    PubMed  CAS  Google Scholar 

  95. Bonner, J. A., Harari, P. M., Giralt, J., et al. (2006). Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. New England Journal of Medicine, 354, 567–578.

    PubMed  CAS  Google Scholar 

  96. Douillard, J. Y., Siena, S., Cassidy, J., et al. (2010). Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. Journal of Clinical Oncology, 28, 4697–4705.

    PubMed  CAS  Google Scholar 

  97. Engelman, J. A., Chen, L., Tan, X., et al. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 14, 1351–1356.

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Faber, A. C., Li, D., Song, Y., et al. (2009). Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proceedings of the National Academy of Sciences of the United States of America, 106, 19503–19508.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Rottenberg, S., Jaspers, J. E., Kersbergen, A., et al. (2008). High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proceedings of the National Academy of Sciences of the United States of America, 105, 17079–17084.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Turner, N. C., Lord, C. J., Iorns, E., et al. (2008). A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO Journal, 27, 1368–1377.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Ibrahim, Y. H., Garcia-Garcia, C., Serra, V., et al. (2010). PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discovery, 2, 1036–1047.

    Google Scholar 

  102. Seoane, S., Montero, J. C., Ocana, A., & Pandiella, A. (2010). Effect of multikinase inhibitors on caspase-independent cell death and DNA damage in HER2-overexpressing breast cancer cells. Journal of the National Cancer Institute, 102, 1432–1446.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ocaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocaña, A., Freedman, O., Amir, E. et al. Biological insights into effective and antagonistic combinations of targeted agents with chemotherapy in solid tumors. Cancer Metastasis Rev 33, 295–307 (2014). https://doi.org/10.1007/s10555-013-9451-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9451-7

Keywords

Navigation