Skip to main content

Advertisement

Log in

Dissipative energy loss within the left ventricle detected by vector flow mapping in diabetic patients with controlled and uncontrolled blood glucose levels

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is related to increased risks of cardiovascular diseases, such as myocardial infarction, diabetic cardiomyopathy and secondary hypertension. Dissipative energy loss (EL) derived from vector flow mapping (VFM) is thought to reflect the efficiency of blood flow and has been deemed to be an index for the evaluation of left ventricular function. Our study aimed to investigate the value of dissipative EL in diabetic patients with controlled and uncontrolled blood glucose by VFM. Eighty-eight patients with DM and 58 age-matched healthy controls were recruited. All of the patients received echocardiography examinations. VFM analyses were executed to calculate the EL values according to the apical four-chamber examinations from the left ventricle (LV) view. Our results showed that diastolic EL was compromised in the controlled-blood glucose (59.19 mV/m vs. 32.68 mV/m, p = 0.039) patients and was more dramatically increased in the uncontrolled blood glucose group (88.84 mV/m vs. 32.68 mV/m, p < 0.001) compared with the healthy controls. The impairment of systolic EL was observed only in the uncontrolled blood glucose patients (39.65 mV/m vs. 20.29 mV/m, p < 0.001) and not in the controlled blood glucose patients (29.25 mV/m vs. 20.29 mV/m, p = 0.072). Multivariate backward stepwise linear regression analysis revealed that the HbA1c level was independently related to the diastolic EL (β = 0.233, p = 0.026) and systolic EL (β = 0.237, p = 0.023). VFM is feasible and reproducible for assessing LV dissipative EL in DM patients with normal LVEF values in whom diastolic EL may be a more vulnerable indicator of early LV cardiac dysfunction in patients with DM. However, LV systolic EL may be a sensitive indicator of preclinical LV dysfunction for patients with DM with uncontrolled blood glucose levels. Uncontrolled blood glucose, which is independently correlated with subclinical LV dysfunction, may lead to increases in systolic EL and diastolic EL in LV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

  2. Selvin E, Lazo M, Chen Y, Shen L, Rubin J, McEvoy JW et al (2014) Diabetes mellitus, prediabetes, and incidence of subclinical myocardial damage. Circulation 130:1374–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV et al (1999) Diabetes and cardiovascular disease: a statement for health care professionals from the American Heart Association. Circulation 100:1134–1146

    Article  CAS  PubMed  Google Scholar 

  4. Laakso M, Lehto S (1997) Epidemiology of macrovascular disease in diabetes. Diabetes Rev 5:294–315

    Google Scholar 

  5. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  6. Ishikawa K, Chemaly ER, Tilemann L, Fish K, Ladage D, Aguero J et al (2012) Assessing left ventricular systolic dysfunction after myocardial infarction: are ejection fraction and dP/dt(max) complementary or redundant? Am J Physiol Heart Circ Physiol 302(7):H1423–H1428

    Article  CAS  PubMed  Google Scholar 

  7. Jellis CL, Stanton T, Leano R, Martin J, Marwick TH (2011) Usefulness of at rest and exercise hemodynamics to detect subclinical myocardial disease in type 2 diabetes mellitus. Am J Cardiol 107:615–624

    Article  PubMed  Google Scholar 

  8. Bergerot C, Rietzschel ER, DeBuyzere ML, Thibault H, PignonBlanc PG et al (2011) Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr 24:1268–1275

    Article  PubMed  Google Scholar 

  9. Bonito P, Moio N, Cavuto L, Covino G, Murena E, Scilla C et al (2005) Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med 22:1720–1725

    Article  PubMed  Google Scholar 

  10. Aurigemma G, Battista S, Orsinelli D, Sweeney A, Pape L, Cuénoud H (1992) Abnormalleft ventricular intracavitary flow acceleration in patients undergoing aorticvalve replacement for aortic stenosis: a marker for high postoperative morbidity and mortality. Circulation 86:926–936

    Article  CAS  PubMed  Google Scholar 

  11. Bartunek J, Sys SU, Rodrigues AC, van Schuerbeeck E, Mortier L, de Bruyne B (1996) Abnormalsystolic intraventricular flow velocities after valve replacement foraortic stenosis. Mechanisms, predictive factors, and prognostic significance. Circulation 93:712–719

    Article  CAS  PubMed  Google Scholar 

  12. Chen M, Jin JM, Zhang YH, Gao Y, Liu SL (2013) Assessment of left ventricular diastolic dysfunction based on the intraventricular velocity difference by vector flow mapping. J Ultrasound Med 32:2063–2071

    Article  PubMed  Google Scholar 

  13. Muñoz DR, Markl M, Mur JLM et al (2013) Intracardiac flow visualization: current status and future directions. Eur Heart J Cardiovasc Imaging 14:1029–1038

    Article  Google Scholar 

  14. Hayashi T, Itatani K, Inuzuka R et al (2015) Dissipative energy loss within the left ventricle detected by vector flow mapping in children: normal values and effects of age and heart rate. J Cardiol. doi:10.1016/j.jjcc.2014.12.012

    Google Scholar 

  15. Feng JL, Li ZP, Wang JR, Gao W (2011) Left ventricular flow vector characteristics and the relationship between flow vector and left ventricular systolic function in patients with anterior myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi 39:1016–1020

    PubMed  Google Scholar 

  16. Zhong Y, Liu Y, Wu T, Song H, Chen Z, Zhu W et al (2016) Assessment of left ventricular dissipative energy loss by vector flow mapping in patients with end-stage renal disease. J Ultrasound Med 35:965–973

    Article  PubMed  Google Scholar 

  17. Stugaard M, Koriyama H, Katsuki K et al (2015) Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur Heart J Cardiovasc Imaging 16:723–730

    Article  PubMed  Google Scholar 

  18. American Diabetes Association (2010) Standards of medical care in diabetes—2010. Diabetes Care 33:S11–S61

    Article  PubMed Central  Google Scholar 

  19. Garcia D, del Alamo JC, Tanne D et al (2010) Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans Med Imaging 29:1701–1713

    Article  PubMed  Google Scholar 

  20. Itatani K, Okada T, Uejima T et al (2013) Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn J Appl Phys 52:07–16

    Article  Google Scholar 

  21. Marwick TH (2004) Tissue Doppler imaging for evaluation of myocardial function in patients with diabetes mellitus. Curr Opin Cardiol 19:442–446

    Article  PubMed  Google Scholar 

  22. Vitarelli A, Sardella G, Roma AD, Capotosto L, De Curtis G, D’Orazio S et al (2012) Assessment of right ventricular function by three-dimensional echocardiography and myocardial strain imaging in adult atrial septal defect before and after percutaneous closure. Int J Cardiovasc Imaging 28:1905–1916

    Article  PubMed  Google Scholar 

  23. Marwick TH (2008) Diastolic disturbances in diabetes mellitus. Diastol Heart Fail. doi:10.1007/978-1-84628-891-3_19

  24. von Bibra H, Sutton MSJ (2010) Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia 53:1033–1045

    Article  Google Scholar 

  25. Karamitsos TD, Karvounis HI, Didangelos T, Parcharidis GE, Karamitsos DT (2008) Impact of autonomic neuropathy on left ventricular function in normotensive type 1 diabetic patients: a tissue Doppler echocardiographic study. Diabetes Care 31:325–327

    Article  PubMed  Google Scholar 

  26. Fang ZY (2004) Diabetic cardiomyopathy: evidence, mechanisms and therapeutic implications. Endocr Rev 25:543–567

    Article  CAS  PubMed  Google Scholar 

  27. O’Rourke MF (2001) Diastolic heart failure, diastolic left ventricular dysfunction and exercise intolerance. J Am Coll Cardiol 38:803–805

    Article  PubMed  Google Scholar 

  28. Heerebeek L, Hamdani N, Handoko L et al (2008) Diastolic stiffness of the failing heart: importance of fibrosis, advanced glycation endproducts and myocyte resting tension. Circulation 117:43–51

    Article  PubMed  Google Scholar 

  29. Young ME, McNulty P, Taegtmeyer H (2002) Adaptation and maladaptation of the heart in diabetes. II. Potential mechanisms. Circulation 105:1861–1870

    Article  CAS  PubMed  Google Scholar 

  30. Brownlee M (2005) The pathophysiology of diabetic complications—a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  31. American Diabetes Association (2012) Standards of medical care in diabetes—2012. Diabetes Care 35:S11–S63

    Article  Google Scholar 

  32. Vinereanu D, Nicolaides E, Tweddel AC, Madler CF, Holst B, Boden LE et al (2003) Subclinical left ventricular dysfunction in asymptomatic patients with typeII diabetes mellitus, related to serum lipids and glycated haemoglobin. Clin Sci 105:591–600

    Article  CAS  PubMed  Google Scholar 

  33. Andersen NH, Poulsen S, Poulsen P, Knudsen S, Helleberg K, Hansen K et al (2005) Left ventricular dysfunction in hypertensive patients with type 2 diabetes mellitus. Diabet Med 22:1218–1225

    Article  CAS  PubMed  Google Scholar 

  34. Iribarren C, Karter AJ, Go AS, Ferrara A, Liu JY, Sidney S et al (2001) Glycemic control and heart failure among adult patients with diabetes. Circulation 103:2668–2673

    Article  CAS  PubMed  Google Scholar 

  35. Grandi AM, Piantanida E, Franzetti I et al (2006) Effect of glycemic control on left ventricular diastolic function in type 1 diabetes mellitus. Am J Cardiol 97:71–76

    Article  CAS  PubMed  Google Scholar 

  36. Bibra H, Siegmund T, Ceriello A et al (2009) Optimized postprandial glucose control is associated with improved cardiac/vascular function—comparison of three insulin regimens in well controlled patients with type 2 diabetes. Hormon Metab Res 41:109–115

    Article  Google Scholar 

  37. Wold LE, Dutta K, Mason MM et al (2005) Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J Mol Cell Cardiol 39:297–307

    Article  CAS  PubMed  Google Scholar 

  38. Barouch LA, Harrison RW, Skaf MW et al (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 426:337–339

    Article  Google Scholar 

  39. Wilkinson IB, Franklin SS, Cockroft JR (2004) Nitric oxide and the regulation of large artery stiffness: from physiology to pharmacology. Hypertension 44:112–116

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Science & Technology Pillar Program of Sichuan Province. (Grant Number 2014SZ0004-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Rao.

Ethics declarations

Conflict of interest

All the authors declare that thay have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cm., Bai, Wj., Liu, Yt. et al. Dissipative energy loss within the left ventricle detected by vector flow mapping in diabetic patients with controlled and uncontrolled blood glucose levels. Int J Cardiovasc Imaging 33, 1151–1158 (2017). https://doi.org/10.1007/s10554-017-1100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1100-8

Keywords

Navigation