Skip to main content

Advertisement

Log in

Rb-82 PET/CT left ventricular mass-to-volume ratios

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Left ventricular (LV) mass:volume ratios indexed to body size (Mi/Vi) provide risk stratification for cardiac events. We sought to determine whether Rb-82 PET mass and volume indices are similar to MRI normal values for low likelihood subjects, and whether abnormal indices are related to abnormal myocardial blood flow (MBF). Data were analyzed retrospectively for 194 patients referred for rest/stress Rb-82 PET. LV EF, volume and mass values were calculated and mass:volume ratios were indexed to patients’ height and weight. MBF was computed from the first pass dynamic component of PET data. 53 patients at low likelihood of CAD had PET Mi/Vi = 1.35 ± 0.27, consistent with the MRI literature range of 1.0–1.5. Compared to patients with normal indexed volume (Vi), patients with abnormally high Vi had lower rest MBF (0.56 ± 0.24 vs 0.93 ± 0.57 ml/g/min, p = 0.0001), and lower stress MBF (0.97 ± 0.52 vs. 1.83 ± 0.96 ml/g/min, p < 0.0001). Stress EF < 50% predicted abnormal Vi with 90% accuracy. Patients with Mi/Vi < 1.0 had abnormally low rest EF (45 ± 16% vs. 60 ± 15%, p < 0.0001) and low rest MBF (0.58 ± 0.25 vs. 0.96 ± 0.59 ml/g/min, p < 0.0001). In our study population, abnormal LV volume and mass correlated with lower rest and stress MBF and EF, suggesting that the pathophysiologic explanation of these patients’ increased risk is more extensive obstructive CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hsiao E, Bilal A, Blankstein R et al (2013) Detection of obstructive coronary artery disease using regadenoson stress and 82Rb PET/CT myocardial perfusion imaging. J Nucl Med 54:1748–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Parkash R, deKemp RA, Ruddy TD et al (2004) Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 11:440–449

    Article  CAS  PubMed  Google Scholar 

  3. Johnson N, Tóth GG, Lai D et al (2014) Prognostic value of fractional flow reserve. Linking physiologic severity to clinical outcomes. J Am Coll Cardiol 64:1641–1654

    Article  PubMed  Google Scholar 

  4. Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V (2014) Quantitative assessment of myocardial blood flow—clinical and research applications. Semin Nucl Med 44:274–293

    Article  PubMed  Google Scholar 

  5. Prior JO, Allenbach G, Valenta I et al (2012) Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 39:1037–1047

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dorbala S, Hachamovitch R, Curillova Z et al (2009) Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2:846–854

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Tosh A, Reichek N, Phippen-Nater B, Palestro CJ, Nichols KJ (2014) Consistency of myocardial mass computations as a quality control check on rest and stress left ventricular ejection fractions computed from Rb-82 PET data. Clin Nucl Med 39:593–597

    Article  PubMed  Google Scholar 

  8. Dewey FE, Rosenthal D, Murphy DJ Jr, Froelicher VF, Ashley EA (2008) Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation 117:2279–2287

    Article  PubMed  Google Scholar 

  9. Bluemke DA, Kronmal RA, Lima JAC et al (2008) The relationship of left ventricular mass and geometry to incident cardiovascular events: The MESA (multi-ethnic study of atherosclerosis) study. J Am Coll Cardiol 52:2148–2155

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boyd HL, Gunn RN, et al (1996) Non-invasive measurement of left ventricular volumes and function by gated positron emission tomography. Eur J Nucl Med 23:1594–1602

    Article  CAS  PubMed  Google Scholar 

  11. Boyd H, Rosen SD, Rimoldi O, Cunningham V, Camici PG (1998) Normal values for left ventricular volumes obtained using gated PET. G Ital Cardiol 28:1207–1214

    CAS  PubMed  Google Scholar 

  12. Rajappan K, Livieratos L, Camici PG, Pennell DJ (2002) Measurement of ventricular volumes and function: a comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med 43:806–810

    PubMed  Google Scholar 

  13. Dorbala S, Di Carli MF, Delbeke D et al (2013) SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med 54:1485–1507

    Article  PubMed  Google Scholar 

  14. Bravo PE, Pozios I, Pinheiro A et al (2012) Comparison and effectiveness of regadenoson versus dipyridamole on stress electrocardiographic changes during positron emission tomography evaluation of patients with hypertrophic cardiomyopathy. Am J Cardiol 110:1033–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gould KL (1989) Clinical cardiac PET using generator-produced Rb-82: a review Cardiovasc Intervent Radiol 12:245–251

    Article  CAS  PubMed  Google Scholar 

  16. Herrero P, Markham J, Shelton ME, Bergmann SR (1992) Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 70:496–507

    Article  CAS  PubMed  Google Scholar 

  17. Sitek A, Gullberg GT, Huesman RH (2002) Correction for ambiguous solutions in factor analysis using a penalized least squares objective. IEEE Trans Med Imaging 21:216–225

    Article  PubMed  Google Scholar 

  18. Yoshida K, Mullani N, Gould KL (1996) Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 37:1701–1712

    CAS  PubMed  Google Scholar 

  19. Czernin J, Muller P, Chan S et al (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69

    Article  CAS  PubMed  Google Scholar 

  20. Gould KL, Martucci JP, Goldberg DI et al (1994) Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing coronary endothelium. Circulation 89:1530–1538

    Article  CAS  PubMed  Google Scholar 

  21. Sdringola S, Johnson NP, Kirkeeide RL, Cid E, Gould KL (2011) Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers. J Am Coll Cardiovasc Imaging 4:402–412

    Article  Google Scholar 

  22. Van Tosh A, Reichek N, Palestro CJ, Nichols KJ (2016) Effect of outflow tract contributions to 82Rb-PET global myocardial blood flow computations. J Nucl Med Technol 44:78–84

    Article  Google Scholar 

  23. Jagathesan R, Barnes E, Rosen SD, Foale R, Camici PG (2006) Dobutamine-induced hyperaemia inversely correlates with coronary artery stenosis severity and highlights dissociation between myocardial blood flow and oxygen consumption. Heart 92:1230–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hauser M, Bengel F, Kuehn A et al (2004) Myocardial blood flow and coronary flow reserve in children with ‘‘normal’’ epicardial coronary arteries after the onset of Kawasaki disease assessed by positron emission tomography. Pediatr Cardiol 25:108–112

    Article  CAS  PubMed  Google Scholar 

  25. Garcia EV, Faber TL, Cooke CD (2007) The increasing role of quantitation in nuclear cardiology: the emory approach. J Nucl Cardiol 14:420–432

    Article  PubMed  Google Scholar 

  26. Santana CA, Folks RD, Garcia EV et al (2007) Quantitative (82)Rb PET/CT: development and validation of myocardial perfusion database. J Nucl Med 48:1122–1128

    Article  PubMed  Google Scholar 

  27. Gaasch WH, Zile MR (2011) Left ventricular structural remodeling in health and disease, with special emphasis on volume, mass, and geometry. J Am Coll Cardiol 58:1733–1740

    Article  PubMed  Google Scholar 

  28. Storto G, Pellegrino T, Sorrentino AR, Luongo L, Petretta M, Cuocolo A (2007) Estimation of coronary flow reserve by sestamibi imaging in type 2 diabetic patients with normal coronary arteries. J Nucl Cardiol 14:194–199

    Article  PubMed  Google Scholar 

  29. Fakhri El, Kardan G, Sitek A et al (2009) Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: comparison with 13N-Ammonia PET. J Nucl Med 50:1062–1071

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chahal H, Bluemke DA, Wu CO et al (2015) Heart failure risk prediction in the multi-ethnic study of atherosclerosis. Heart 101:58–64

    Article  CAS  PubMed  Google Scholar 

  31. Oseni AO, Qureshi WT, Almahmoud MF et al (2017) Left ventricular hypertrophy by ECG versus cardiac MRI as a predictor for heart failure. Heart 103:49–54

    Article  PubMed  Google Scholar 

  32. Dweck MR, Joshi S, Murigu T et al (2012) Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:50–59

    Article  PubMed  PubMed Central  Google Scholar 

  33. Grossman W, Paulus WJ (2013) Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J Clin Investig 123:3701–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang B-T, Peng Y, Liu W et al (2014) Subclassification of left ventricular hypertrophy based on dilation stratifies coronary artery disease patients with distinct risk. Eur J Clin Investig 44:893–901

    Article  Google Scholar 

  35. Cherry SR, Sorenson JA, Phelps ME (2012) Positron emission tography, in Physics in Nuclear Medicine, 4th edition. Elsevier, Philadelphia. pp 307–343

    Google Scholar 

  36. Johnson NP, Sdringola S, Gould KL (2011) Partial volume correction incorporating Rb-82 positron range for quantitative myocardial perfusion PET based on systolic-diastolic activity ratios and phantom measurements. J Nucl Cardiol 18:247–258

    Article  PubMed  Google Scholar 

  37. Galt JR, Garcia EV, Robbins WL (1990) Effects of myocardial wall thickness of SPECT quantification. IEEE Trans Med Imaging 9:144–150

    Article  CAS  PubMed  Google Scholar 

  38. Lertsburapa K, Ahlberg AW, Bateman TM et al (2008) Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 15:745–753

    Article  PubMed  Google Scholar 

Download references

Disclosures

Andrew Van Tosh serves as a consultant to Astellas Pharmaceuticals, Inc. C. David Cooke and Kenneth Nichols receive royalties from Syntermed, Inc., in relation to cardiac software used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Nichols.

Ethics declarations

Conflict of interest

Andrew Van Tosh serves as a consultant to Astellas Pharmaceuticals, Inc. C. David Cooke and Kenneth Nichols receive royalties from Syntermed, Inc., in relation to some of the cardiac software used in this investigation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosh, A.V., Reichek, N., Cooke, C.D. et al. Rb-82 PET/CT left ventricular mass-to-volume ratios. Int J Cardiovasc Imaging 33, 1263–1270 (2017). https://doi.org/10.1007/s10554-017-1087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1087-1

Keywords

Navigation