Skip to main content
Log in

Incremental value of cardiac deformation analysis in acute myocarditis: a cardiovascular magnetic resonance imaging study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this study was to assess cardiac deformation patterns in myocarditis applying feature tracking imaging (FTI) to cardiovascular magnetic resonance (CMR) images. Thirty-six patients (31 males) with acute myocarditis and 36 age- and gender-matched healthy volunteers were studied. CMR examinations were performed in a 1.5 T MR-scanner including late gadolinium enhancement (LGE). FTI was applied to standard cine images of long and short axis views. Global peak circumferential, longitudinal and radial systolic strains as well as long axis strain (LAS) were measured. Patients showed significantly impaired global peak circumferential (−24.4 ± 4.2 % vs. −28.8 ± 3.8 %, p < 0.0001), longitudinal (−17.6 ± 4.4 % vs. −23.8 ± 3.1 %, p < 0.0001) and radial (26.1 ± 5.4 % vs. 37.9 ± 7.6 %, p < 0.0001) systolic strains. Even patients with a preserved ejection fraction (pEF, ≥55 %) had significantly reduced longitudinal (−20.0 ± 4.8 % vs. −23.8 ± 3.1 %, p < 0.01) and radial (27.7 ± 5.5 % vs. 37.9 ± 7.6 %, p < 0.0001) strains. The extent of LGE in patients did not correlate to their respective strains. Regarding the differentiation between patients and controls, the addition of global peak systolic strains to ejection fraction led to a significant improvement of the logistic regression model (χ2 48.7 vs. 71.5; p < 0.001) resulting in a high AUC of 0.98. Applying previously published reference values, 75 % or 31 % of patients with pEF showed at least one strain value or a LAS, which fell below the limit of 1 or respectively 2 standard deviations from the reference mean value. Cardiac strains measured by CMR–FTI are significantly impaired in patients with acute myocarditis even in those with pEF. Therefore, strain assessment may improve the diagnostic accuracy of CMR for myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fabre A, Sheppard MN (2006) Sudden adult death syndrome and other non-ischaemic causes of sudden cardiac death. Heart 92(3):316–320. doi:10.1136/hrt.2004.045518

    Article  CAS  PubMed  Google Scholar 

  2. Doolan A, Langlois N, Semsarian C (2004) Causes of sudden cardiac death in young Australians. Med J Aust 180(3):110–112

    PubMed  Google Scholar 

  3. Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, Kispert EM, Hill S, Ong P, Klingel K, Kandolf R, Sechtem U, Mahrholdt H (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59(18):1604–1615. doi:10.1016/j.jacc.2012.01.007

    Article  PubMed  Google Scholar 

  4. Pennell DJ (2010) Cardiovascular magnetic resonance. Circulation 121(5):692–705. doi:10.1161/CIRCULATIONAHA.108.811547

    Article  PubMed  Google Scholar 

  5. Schumm J, Greulich S, Wagner A, Grun S, Ong P, Bentz K, Klingel K, Kandolf R, Bruder O, Schneider S, Sechtem U, Mahrholdt H (2014) Cardiovascular magnetic resonance risk stratification in patients with clinically suspected myocarditis. J Cardiovasc Magn Reson 16:14. doi:10.1186/1532-429X-16-14

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54(7):618–624. doi:10.1016/j.jacc.2009.04.061

    Article  PubMed  Google Scholar 

  7. Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, Schellberg D, Zugck C, Galuschky C, Giannitsis E, Hegenbart U, Ho AD, Katus HA, Schonland SO, Hardt SE (2012) Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 60(12):1067–1076. doi:10.1016/j.jacc.2012.04.043

    Article  PubMed  Google Scholar 

  8. Korosoglou G, Gitsioudis G, Voss A, Lehrke S, Riedle N, Buss SJ, Zugck C, Giannitsis E, Osman NF, Katus HA (2011) Strain-encoded cardiac magnetic resonance during high-dose dobutamine stress testing for the estimation of cardiac outcomes: comparison to clinical parameters and conventional wall motion readings. J Am Coll Cardiol 58(11):1140–1149. doi:10.1016/j.jacc.2011.03.063

    Article  CAS  PubMed  Google Scholar 

  9. Taylor RJ, Moody WE, Umar F, Edwards NC, Taylor TJ, Stegemann B, Townend JN, Hor KN, Steeds RP, Mazur W, Leyva F (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J. doi:10.1093/ehjci/jev006

    Google Scholar 

  10. Andre F, Steen H, Matheis P, Westkott M, Breuninger K, Sander Y, Kammerer R, Galuschky C, Giannitsis E, Korosoglou G, Katus HA, Buss SJ (2015) Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 17(1):25. doi:10.1186/s12968-015-0123-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Augustine D, Lewandowski AJ, Lazdam M, Rai A, Francis J, Myerson S, Noble A, Becher H, Neubauer S, Petersen SE, Leeson P (2013) Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 15:8. doi:10.1186/1532-429X-15-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, Al-Khalidi HR, Chung ES, Benson DW, Mazur W (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. Cardiovas Imaging 3(2):144–151. doi:10.1016/j.jcmg.2009.11.006

    Article  Google Scholar 

  13. Onishi T, Saha SK, Ludwig DR, Onishi T, Marek JJ, Cavalcante JL, Schelbert EB, Schwartzman D, Gorcsan J 3rd (2013) Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 15:95. doi:10.1186/1532-429X-15-95

    Article  PubMed  PubMed Central  Google Scholar 

  14. Williams LK, Urbano-Moral JA, Rowin EJ, Jamorski M, Bruchal-Garbicz B, Carasso S, Pandian NG, Maron MS, Rakowski H (2013) Velocity vector imaging in the measurement of left ventricular myocardial mechanics on cardiac magnetic resonance imaging: correlations with echocardiographically derived strain values. J Am Soc Echocardiogr 26(10):1153–1162. doi:10.1016/j.echo.2013.06.008

    Article  PubMed  Google Scholar 

  15. Moody WE, Taylor RJ, Edwards NC, Chue CD, Umar F, Taylor TJ, Ferro CJ, Young AA, Townend JN, Leyva F, Steeds RP (2015) Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magn Reson Imaging 41(4):1000–1012. doi:10.1002/jmri.24623

    Article  PubMed  Google Scholar 

  16. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098. doi:10.1056/NEJM198710223171717

    CAS  PubMed  Google Scholar 

  17. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA (2009) Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 56(2):254–261. doi:10.1373/clinchem.2009.132654

    Article  PubMed  Google Scholar 

  18. Riffel JH, Andre F, Maertens M, Rost F, Keller MG, Giusca S, Seitz S, Kristen AV, Muller M, Giannitsis E, Korosoglou G, Katus HA, Buss SJ (2015) Fast assessment of long axis strain with standard cardiovascular magnetic resonance: a validation study of a novel parameter with reference values. J Cardiovasc Magn Reson 17(1):69. doi:10.1186/s12968-015-0171-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15:35. doi:10.1186/1532-429X-15-35

    Article  PubMed  PubMed Central  Google Scholar 

  20. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P, International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis (2009) Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 53(17):1475–1487. doi:10.1016/j.jacc.2009.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  21. Di Bella G, Gaeta M, Pingitore A, Oreto G, Zito C, Minutoli F, Anfuso C, Dattilo G, Lamari A, Coglitore S, Carerj S (2010) Myocardial deformation in acute myocarditis with normal left ventricular wall motion—a cardiac magnetic resonance and 2-dimensional strain echocardiographic study. Circulation 74(6):1205–1213

    Article  Google Scholar 

  22. Khoo NS, Smallhorn JF, Atallah J, Kaneko S, Mackie AS, Paterson I (2012) Altered left ventricular tissue velocities, deformation and twist in children and young adults with acute myocarditis and normal ejection fraction. J Am Soc Echocardiogr 25(3):294–303. doi:10.1016/j.echo.2011.10.010

    Article  PubMed  Google Scholar 

  23. Schuster A, Morton G, Hussain ST, Jogiya R, Kutty S, Asrress KN, Makowski MR, Bigalke B, Perera D, Beerbaum P, Nagel E (2013) The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. Eur J Radiol 82(2):296–301. doi:10.1016/j.ejrad.2012.11.012

    Article  PubMed  Google Scholar 

  24. Hsiao JF, Koshino Y, Bonnichsen CR, Yu Y, Miller FA Jr, Pellikka PA, Cooper LT Jr, Villarraga HR (2013) Speckle tracking echocardiography in acute myocarditis. Int J Cardiovasc Imaging 29(2):275–284. doi:10.1007/s10554-012-0085-6

    Article  PubMed  Google Scholar 

  25. Leitman M, Bachner-Hinenzon N, Adam D, Fuchs T, Theodorovich N, Peleg E, Krakover R, Moravsky G, Uriel N, Vered Z (2011) Speckle tracking imaging in acute inflammatory pericardial diseases. Echocardiography 28(5):548–555. doi:10.1111/j.1540-8175.2010.01371.x

    Article  PubMed  Google Scholar 

  26. Escher F, Kasner M, Kuhl U, Heymer J, Wilkenshoff U, Tschope C, Schultheiss HP (2013) New echocardiographic findings correlate with intramyocardial inflammation in endomyocardial biopsies of patients with acute myocarditis and inflammatory cardiomyopathy. Mediat Inflamm 2013:875420. doi:10.1155/2013/875420

    Article  Google Scholar 

  27. Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, Lindinger A, Bohm M (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118(6):639–648. doi:10.1161/CIRCULATIONAHA.108.769489

    Article  PubMed  Google Scholar 

  28. Radunski UK, Lund GK, Stehning C, Schnackenburg B, Bohnen S, Adam G, Blankenberg S, Muellerleile K (2014) CMR in patients with severe myocarditis: diagnostic value of quantitative tissue markers including extracellular volume imaging. Cardiovasc Imaging 7 (7):667–675. doi:10.1016/j.jcmg.2014.02.005

    Article  Google Scholar 

  29. Hinojar R, Foote L, Arroyo Ucar E, Jackson T, Jabbour A, Yu CY, McCrohon J, Higgins DM, Carr-White G, Mayr M, Nagel E, Puntmann VO (2015) Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. Cardiovasc Imaging 8 (1):37–46. doi:10.1016/j.jcmg.2014.07.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian J. Buss.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

All individual participants of the study gave informed consent to the clinically indicated examinations. For the retrospective analysis of the obtained data a waiver of all consents was granted from the institutional research committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, F., Stock, F.T., Riffel, J. et al. Incremental value of cardiac deformation analysis in acute myocarditis: a cardiovascular magnetic resonance imaging study. Int J Cardiovasc Imaging 32, 1093–1101 (2016). https://doi.org/10.1007/s10554-016-0878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0878-0

Keywords

Navigation