Skip to main content
Log in

Non-culprit coronary lesions in young patients have higher rates of atherosclerotic progression

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The present study aimed to investigate whether non-culprit coronary lesions (NCCLs) in young patients (<45 years) who underwent percutaneous coronary intervention (PCI) with stents have higher rates of atherosclerotic progression than older patients. Eight hundred and forty-eight consecutive patients who underwent successful PCI with stents and second coronary angiography in a single center from January 7, 2008 to May 7, 2013 were enrolled. NCCL progression was assessed using three-dimensional quantitative coronary angiography and was defined as ≥10 % diameter reduction of preexisting stenoses of ≥50 %, ≥30 % diameter reduction of <50 % stenoses, development of a new stenosis of ≥30 % in a previously normal segment, or progression to total occlusion. The mean time interval between two catheterization was 10.79 months; 136 (16.0 %) patients exhibited progression of NCCLs. Multivariate Cox regression analysis (stepwise) showed young age to be an independent determinant of NCCL progression. Compared with the older patients(≥45 years), the crude hazard ratio (HR) for NCCL progression in the young patients(<45 years) was 2.17 (95 % CI 1.42–3.30; P < 0.001); the association remained significant after adjustment for sex, ST elevation myocardial infarction, body mass index, systolic and diastolic blood pressure, serum lipids, fasting blood glucose, smoking, drinking, hypertension, family history of coronary heart disease, diabetes mellitus, medication use and NCCL characteristics (adjusted HR 1.70, 95 % CI 1.06–2.72; P = 0.029). NCCLs in young patients (<45 years) with coronary artery disease have high rates of atherosclerotic progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hosseini SK, Soleimani A, Karimi AA, Sadeghian S, Darabian S et al (2009) Clinical features, management and in-hospital outcome of ST elevation myocardial infarction (STEMI) in young adults under 40 years of age. Monaldi Arch Chest Dis 72:71–76

    PubMed  Google Scholar 

  2. Bajaj S, Shamoon F, Gupta N, Parikh R, Parikh N et al (2011) Acute ST-segment elevation myocardial infarction in young adults: Who is at risk? Coron Artery Dis 22:238–244

    Article  PubMed  Google Scholar 

  3. Panduranga P, Sulaiman K, Al-Zakwani I, Abdelrahman S (2010) Acute coronary syndrome in young adults from Oman: results from the gulf registry of acute coronary events. Heart Views 11:93–98

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hong MK, Cho SY, Hong BK, Chang KJ, Mo-Chung I et al (1994) Acute myocardial infarction in the young adults. Yonsei Med J 35:184–189

    Article  CAS  PubMed  Google Scholar 

  5. Pineda J, Marin F, Roldan V, Valencia J, Marco P et al (2008) Premature myocardial infarction: clinical profile and angiographic findings. Int J Cardiol 126:127–129

    Article  PubMed  Google Scholar 

  6. Morillas P, Bertomeu V, Pabon P, Ancillo P, Bermejo J et al (2007) Characteristics and outcome of acute myocardial infarction in young patients. The PRIAMHO II study. Cardiology 107:217–225

    Article  PubMed  Google Scholar 

  7. Doughty M, Mehta R, Bruckman D, Das S, Karavite D et al (2002) Acute myocardial infarction in the young–The University of Michigan experience. Am Heart J 143:56–62

    Article  PubMed  Google Scholar 

  8. Chouhan L, Hajar HA, Pomposiello JC (1993) Comparison of thrombolytic therapy for acute myocardial infarction in patients aged <35 and >55 years. Am J Cardiol 71:157–159

    Article  CAS  PubMed  Google Scholar 

  9. Hoit BD, Gilpin EA, Henning H, Maisel AA, Dittrich H et al (1986) Myocardial infarction in young patients: an analysis by age subsets. Circulation 74:712–721

    Article  CAS  PubMed  Google Scholar 

  10. Al-Koubaisy OK, Mehdi RS, Arem FD, Ahmed IT (1990) Cine angiographic findings in young Iraqi men with first acute myocardial infarction. Cathet Cardiovasc Diagn 19:87–90

    Article  CAS  PubMed  Google Scholar 

  11. Chan MY, Woo KS, Wong HB, Chia BL, Sutandar A et al (2006) Antecedent risk factors and their control in young patients with a first myocardial infarction. Singapore Med J 47:27–30

    CAS  PubMed  Google Scholar 

  12. Khawaja FJ, Rihal CS, Lennon RJ, Holmes DR, Prasad A (2011) Temporal trends (over 30 years), clinical characteristics, outcomes, and gender in patients ≤50 years of age having percutaneous coronary intervention. Am J Cardiol 107:668–674

    Article  PubMed  Google Scholar 

  13. Oliveira A, Barros H, Maciel MJ, Lopes C (2007) Tobacco smoking and acute myocardial infarction in young adults: a population-based case–control study. Prev Med 44:311–316

    Article  PubMed  Google Scholar 

  14. Schoenenberger AW, Radovanovic D, Stauffer JC, Windecker S, Urban P et al (2011) Acute coronary syndromes in young patients: presentation, treatment and outcome. Int J Cardiol 148:300–304

    Article  PubMed  Google Scholar 

  15. Trzos E, Uznanska B, Rechcinski T, Krzeminska-Pakula M, Bugala M et al (2009) Myocardial infarction in young people. Cardiol J 16:307–311

    PubMed  Google Scholar 

  16. Zimmerman FH, Cameron A, Fisher LD, Ng G (1995) Myocardial infarction in young adults: angiographic characterization, risk factors and prognosis (Coronary Artery Surgery Study Registry). J Am Coll Cardiol 26:654–661

    Article  CAS  PubMed  Google Scholar 

  17. Yildirim N, Arat N, Dogan MS, Sokmen Y, Ozcan F (2007) Comparison of traditional risk factors, natural history and angiographic findings between coronary heart disease patients with age <40 and ≥40 years old. Anadolu Kardiyol Derg 7:124–127

    PubMed  Google Scholar 

  18. Goldberg RJ, McCormick D, Gurwitz JH, Yarzebski J, Lessard D et al (1998) Age-related trends in short- and long-term survival after acute myocardial infarction: a 20-year population-based perspective (1975–1995). Am J Cardiol 82:1311–1317

    Article  CAS  PubMed  Google Scholar 

  19. Moccetti T, Malacrida R, Pasotti E, Sessa F, Genoni M et al (1997) Epidemiologic variables and outcome of 1972 young patients with acute myocardial infarction. Data from the GISSI-2 database. Investigators of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI-2). Arch Intern Med 157:865–869

    Article  CAS  PubMed  Google Scholar 

  20. Chen L, Chester M, Kaski JC (1995) Clinical factors and angiographic features associated with premature coronary artery disease. Chest 108:364–369

    Article  CAS  PubMed  Google Scholar 

  21. Cole JH, Miller JI 3rd, Sperling LS, Weintraub WS (2003) Long-term follow-up of coronary artery disease presenting in young adults. J Am Coll Cardiol 41:521–528

    Article  PubMed  Google Scholar 

  22. Tu S, Holm N, Koning G et al (2011) The impact of acquisition angle difference on three-dimensional quantitative coronary angiography. Catheter Cardiovasc Interv 78:214–222

    Article  PubMed  Google Scholar 

  23. Tu S, Xu L, Ligthart J et al (2012) In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography. Int J Cardiovasc Imaging 28:1315–1327

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zouridakis E, Avanzas P, Arroyo-Espliguero R et al (2004) Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation 110:1747–1753

    Article  CAS  PubMed  Google Scholar 

  25. Han Y, Jing J, Tu S, Tian F, Xue H et al (2014) ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. Int J Cardiovasc Imaging 30:253–261

    Article  PubMed  Google Scholar 

  26. Guazzi MD, Bussotti M, Grancini L, De Cesare N, Guazzi M et al (1997) Evidence of multifocal activity of coronary disease in patients with acute myocardial infarction. Circulation 96:1145–1151

    Article  CAS  PubMed  Google Scholar 

  27. Hawranek M, Gasior M, Gierlotka M et al (2010) Progression of coronary artery atherosclerosis after acute myocardial infarction: an angiographic study. J Invasive Cardiol 22(5):209–215

    PubMed  Google Scholar 

  28. Barry J, Mead K, Nabel EG, Rocco MB, Campbell S et al (1989) Effect of smoking on the activity of ischemic heart disease. JAMA 261:398–402

    Article  CAS  PubMed  Google Scholar 

  29. Cavender JB, Rogers WJ, Fisher LD, Gersh BJ, Coggin CJ et al (1992) Effects of smoking on survival and morbidity in patients randomized to medical or surgical therapy in the Coronary Artery Surgery Study (CASS): 10-year follow-up. CASS Investigators. J Am Coll Cardiol 20:287–294

    Article  CAS  PubMed  Google Scholar 

  30. Waters D, Lesperance J, Gladstone P, Boccuzzi SJ, Cook T et al (1996) Effects of cigarette smoking on the angiographic evolution of coronary atherosclerosis. A Canadian Coronary Atherosclerosis Intervention Trial (CCAIT) Substudy. CCAIT Study Group. Circulation 94:614–621

    Article  CAS  PubMed  Google Scholar 

  31. Wenzlaff P, Amende I (1994) Progression of coronary sclerosis after smoking cessation. Z Kardiol 83: 703–710

  32. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 62:707–714

    Article  CAS  PubMed  Google Scholar 

  33. Bruckert E, Baccara-Dinet M, McCoy F, Chapman J (2005) High prevalence of low HDL-cholesterol in a pan-European survey of 8545 dyslipidaemic patients. Curr Med Res Opin 21:1927–1934

    Article  CAS  PubMed  Google Scholar 

  34. Aguilar-Salinas CA, Olaiz G, Valles V, Torres JM, Gomez Perez FJ et al (2001) High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J Lipid Res 42:1298–1307

    CAS  PubMed  Google Scholar 

  35. Nicholls SJ, Cutri B, Worthley SG, Kee P, Rye KA et al (2005) Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 25:2416–2421

    Article  CAS  PubMed  Google Scholar 

  36. Rong JX, Li J, Reis ED, Choudhury RP, Dansky HM et al (2001) Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation 104:2447–2452

    Article  CAS  PubMed  Google Scholar 

  37. Shah PK, Yano J, Reyes O, Chyu KY, Kaul S et al (2001) High-dose recombinant apolipoprotein A-I (milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization. Circulation 103:3047–3050

    Article  CAS  PubMed  Google Scholar 

  38. Malmberg K, Bavenholm P, Hamsten A (1994) Clinical and biochemical factors associated with prognosis after myocardial infarction at a young age. J Am Coll Cardiol 24:592–599

    Article  CAS  PubMed  Google Scholar 

  39. Roberts R, Stewart AF (2012) Genes and coronary artery disease: Where are we? J Am Coll Cardiol 60:1715–1721

    Article  CAS  PubMed  Google Scholar 

  40. van Beers EJ, Meuwese MC (2007) Comment on: Kretowski et al. (2007) Polymorphisms of the renin–angiotensin system genes predict progression of subclinical coronary atherosclerosis. Diabetes 56:863–871 Diabetes 56: e5; author reply e6

    Article  Google Scholar 

  41. Yasuda H, Kamide K, Takiuchi S, Matayoshi T, Hanada H et al (2007) Association of single nucleotide polymorphisms in endothelin family genes with the progression of atherosclerosis in patients with essential hypertension. J Hum Hypertens 21:883–892

    Article  CAS  PubMed  Google Scholar 

  42. Kretowski A, McFann K, Hokanson JE, Maahs D, Kinney G et al (2007) Polymorphisms of the renin–angiotensin system genes predict progression of subclinical coronary atherosclerosis. Diabetes 56:863–871

    Article  CAS  PubMed  Google Scholar 

  43. Brown BG, Zhao XQ, Chait A et al (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345:1583–1592

    Article  CAS  PubMed  Google Scholar 

  44. Reiber JHC, Tuinenburg JC, Koning G et al (2009) Quantitative coronary arteriography. In: Oudkerk M, Reiser MF (eds) Coronary radiology 2nd revised edition. Series: medical radiology. Baert AL, Knauth M, Sartor K (eds) Sub series: diagnostic imaging. Springer, Berlin, pp 41–65

  45. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  CAS  PubMed  Google Scholar 

  46. Isner JM, Kishel J, Kent KM, Ronan JA Jr, Ross AM, Roberts WC (1981) Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic–histologic correlative analysis in 28 patients. Circulation 63:1056–1064

    Article  CAS  PubMed  Google Scholar 

  47. White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    Article  CAS  PubMed  Google Scholar 

  48. Berry C, L’Allier PL, Gregoire J et al (2007) Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation 115:1851–1857

    Article  PubMed  Google Scholar 

  49. Brown BG (2007) A direct comparison of intravascular ultrasound and quantitative coronary arteriography: implications for measures of atherosclerosis as clinical surrogates. Circulation 115:1824–1826

    Article  PubMed  Google Scholar 

  50. Kaski JC, Chester MR, Chen L, Katritsis D (1995) Rapid angiographic progression of coronary artery disease in patients with angina pectoris. The role of complex stenosis morphology. Circulation 92:2058–2065

    Article  CAS  PubMed  Google Scholar 

  51. Waters D, Craven TE, Lesperance J (1993) Prognostic significance of progression of coronary atherosclerosis. Circulation 87:1067–1075

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yundai Chen.

Additional information

Jiantao Li and Yunfeng Han have contributed equally to the writing of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Han, Y., Jing, J. et al. Non-culprit coronary lesions in young patients have higher rates of atherosclerotic progression. Int J Cardiovasc Imaging 31, 889–897 (2015). https://doi.org/10.1007/s10554-015-0635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0635-9

Keywords

Navigation