Skip to main content
Log in

Modeling and Simulation of the Fluidized Bed and Freeboard of an FCCU Regenerator

  • INNOVATIVE TECHNOLOGIES IN THE OIL AND GAS INDUSTRY
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

A model proposed for the typical regenerator of a commercial fluid catalytic cracking unit (FCCU) incorporates a fluid-dynamics model for a fluidized bed that takes into account three phases, namely, emulsion, wake-cloud, and bubbles, and is combined with a kinetic coke combustion model. The latter is complemented with a model for the afterburning that may occur in the freeboard. The overall model computes the extent to which coke deposited on the catalyst is burnt, the diameter and rate of ascent of bubbles, the composition and temperature of the combustion gases (O2, CO2, CO, and H2O) at different heights of the fluidized bed and freeboard in the generator, and the temperature of the cyclones. The regenerator model was written in Visual Basic in order to simulate an actual regenerator unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Garcia-Dopico and A. Garcia, Chem. Ind. Chem. Eng. Q., 21, 95-105 (2015).

    Article  CAS  Google Scholar 

  2. M. Garcia-Dopico, A. Garcia, and A. Santos, Appl. Catal., A, 303, 245-250 (2006).

  3. M. Garcia-Dopico, A. Garcia, and A. Santos Garcia, in: 2nd Int. Conference on Advances in Petrochemical and Polymers, Bangkok, Thailand, June 2007.

  4. R. C. McFarlane, R. C. Reineman, J. F. Bartee, et al., Comput. Chem. Eng., 17, 275-300 (1993).

    Article  CAS  Google Scholar 

  5. J. M. Arandes and H. I. Lasa, Chem. Eng. Sci., 47, 2535-2540 (1992).

    Article  CAS  Google Scholar 

  6. E. Mihalcea, G. Pop, G. Bozga, et al., Prog. Catal. (J. Rom. Catal. Soc.), 2, 33-46 (1993).

  7. Y. Y. Zheng, Comput. Chem. Eng., 18, 39-44 (1994).

    Article  CAS  Google Scholar 

  8. J. Fernandes, J. Verstraete, C. Pinheiro, et al., Chem. Eng. Sci., 62, 1184-1198 (2007).

    Article  CAS  Google Scholar 

  9. C. I. C. Pinheiro, J. L. Fernandes, L. Domingues, et al., Ind. Eng. Chem. Res., 51, 1-29 (2012).

    Article  CAS  Google Scholar 

  10. J. Corella, R. Bilbao, and J. Lopez Pena, Ing. Quim., 158, 127-136 (1982).

    Google Scholar 

  11. P. Weisz and R. Goodwin, J. Catal., 6, 227-236 (1966).

    Article  CAS  Google Scholar 

  12. M. Hovd and S. Skogestad, in: IFAC Symposium ADCHEM, Toulouse, France, October 1991.

  13. A. K. Das, V. L. N. Murthy, and S. Ghosh, Indian Chem. Eng., 34, 51-56 (1992).

    CAS  Google Scholar 

  14. J. R. Arthur, Trans. Faraday Soc., 47, 167-178 (1951).

    Article  Google Scholar 

  15. P. Dasila, I. Choudhury, D. Saraf, et al., Adv. Chem. Eng. Sci., 2, 136-149 (2012).

    Article  CAS  Google Scholar 

  16. O. Faltsi-Saravelou, I. A. Vasalos, and G. Dimogiorgas, Comput. Chem. Eng., 15, 647-656 (1991).

    Article  CAS  Google Scholar 

  17. K. Morley and H. De Lasa, Can. J. Chem. Eng., 65, 773-777 (1987).

    Article  CAS  Google Scholar 

  18. S. Kumar, A. Chadha, R. Gupta, et al., Ind. Eng. Chem. Res., 34, 3737-3748 (1995).

    Article  CAS  Google Scholar 

  19. I. S. Han and C. B. Chung, Chem. Eng. Sci., 56, 1951-1971 (2001).

    Article  CAS  Google Scholar 

  20. C. Jia, S. Rohani, and A. Jutan, Chem. Eng. Process., 41, 311-325 (2003).

    Article  Google Scholar 

  21. G. Bollas, I. Vasalos, A. Lappas, et al., Chem. Eng. Sci., 62, 1887-1904 (2007).

    Article  CAS  Google Scholar 

  22. L. R. Williams, “Modeling and Optimization of a Two-Stage Regenerator Fluid Catalytic Cracking Unit,” Ph.D. Thesis, Rice Univ., Texas, USA, 1998.

  23. P. Turlier, M. Forissier, P. Rivault, et al., in: Fluid Catalytic Cracking. Part III, American Chemical Society, 1994, pp. 98-109.

  24. H. I. Lasa and J. R. Grace, AIChE J., 25, 984-991 (1979).

    Article  Google Scholar 

  25. Grace Division, Guide to Fluid Catalytic Cracking, Part 2, W. R. Grace & Co., Conn., 1996.

  26. T. Hano, F. Nakashio, and K. Kusukoni, J. Chem. Eng. Jpn., 8, 127-130 (1975).

    Article  CAS  Google Scholar 

  27. J. W. Wells, W. C. Rahlwes, and P. V. Steed, AIChE Symp. Ser., 88, 96-102 (1992).

    Google Scholar 

  28. A. F. Errazu, H. I. Lasa, and F. Sarti, Can. J. Chem. Eng., 57, 191-197 (1979).

    Article  CAS  Google Scholar 

  29. J. Howard, G. Williams, and D. Fine, in: 14th Symp. Internal Combustion, Combustion Institute, 1973, Vol. 14, pp. 975-986.

  30. J. Fernandes, L. Domingues, C. Pinheiro, et al., Fuel, 97, 97-108 (2012).

    Article  CAS  Google Scholar 

  31. G. F. Froment and K. B. Bischoff, Chemical Reactor Analysis and Design, John Wiley & Sons, New York, 1990.

    Google Scholar 

  32. R. D. Toomey and H. F. Johnstone, Chem. Eng. Prog., 48, 220-226 (1952).

    CAS  Google Scholar 

  33. D. Kunii and O. Levenspiel, Ind. Eng. Chem. Res., 29, 1226 (1990).

    Article  CAS  Google Scholar 

  34. P. N. Rowe and B. A. Partridge, Trans. Inst. Chem. Eng., 43, 157-175 (1965).

    Google Scholar 

  35. J. F. Davidson and D. Harrison, Fluidized Particles, Cambridge University Press, 1963.

  36. S. Rafailidis, R. Clift, and E. J. Addis, AIChE Symp. Ser., 87, 47-57 (1991).

    CAS  Google Scholar 

  37. G. Hetsroni, Handbook of Multiphase Systems, Hemisphere Publishing Corp., 1982.

  38. D. Geldart, Powder Technol., 4, 41-55 (1971).

    Article  Google Scholar 

  39. S. Mori and Y. Wen, AIChE J., 21, 109-115 (1975).

    Article  CAS  Google Scholar 

  40. R. Darton, R. D. Lanauze, J. F. Davidson, et al., Trans. Inst. Chem. Eng., 55, 274-280 (1977).

    CAS  Google Scholar 

  41. R. Rao, R. Rengaswamy, A. Suresh, et al., Chem. Eng. Res. Des., 84, 527-552 (2004).

    CAS  Google Scholar 

  42. Refining Process Services and Honeywell, Fluid Catalytic Cracking Process Technology, 1998.

  43. S. Pannala, C. S. Daw, and S. J. Hallow, in: SIAM Conference on Computational Science and Engineering, San Diego, USA, Feb. 2003.

  44. E. Pierce, Hydrocarbon Process., 62, 39-42 (1983).

    CAS  Google Scholar 

  45. J. W. Willson and C. Ross, in: NPRA Annual Meeting, San Antonio, Texas, USA, Mar. 1999, pp. 1691-1696.

  46. J. J. Monge and C. Georgakis, Chem. Eng. Commun., 60, 1-26 (1987).

    Article  CAS  Google Scholar 

  47. M. J. Azkoiti, “Modelado y simulacion de unidades de craqueo catalitico, FCC aplicaciones a unidades en funcionamiento,” Ph.D. Thesis, Univ. Pais Vasco, Spain, 1991.

  48. J. Wilson, Catal. Courier, 54, (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Garcia-Dopico.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 59 – 67, November – December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Dopico, M., Garcia, A. Modeling and Simulation of the Fluidized Bed and Freeboard of an FCCU Regenerator. Chem Technol Fuels Oils 52, 716–731 (2017). https://doi.org/10.1007/s10553-017-0765-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-017-0765-y

Keywords

Navigation