Skip to main content

Advertisement

Log in

Polymorphisms in arsenic metabolism genes, urinary arsenic methylation profile and cancer

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Arsenic-metabolism-related genes can regulate the arsenic methylation process and may influence susceptibility to cancer. We evaluated the roles of arsenic metabolism genes on urinary arsenic profiles of repeated measurement with 15-year follow-up (1988–2004) through general linear model (GLM) and assessed the effect of the changed extent of urinary arsenic profiles on cancer risk. Questionnaire information and blood samples and two urines (1988 and 2004) were collected from 208 subjects in an arseniasis hyperendemic area in Taiwan. Profiles for concentrations of urinary arsenic were determined using HPLC-HG-AAS. The relative proportion of each arsenic species was calculated by dividing the concentration of each arsenic species by the total arsenic concentration. Genotyping was done using the 5′ nuclease allelic discrimination (Taqman) assay. The incidence of cancer was identified through linking to the National Cancer Registry Systems. The Cox proportional hazards model and survival curves were used in the analyses. After a 15-year follow-up, baseline monomethylarsonic acid percentage (MMA%) and change in MMA% exhibited a significant dose–response relationship with cancer risk. Individuals with a higher baseline MMA% and a lower change in MMA% had the earliest cancer incidence (statistically significant). Through GLM, significant gene effects of arsenic (+3 oxidation state)-methyltransferase (AS3MT) on MMA%, dimethylarsinic acid percentage (DMA%) and DMA/MMA, purine nucleoside phosphorylase (PNP) on DMA% and glutathione S-transferase omega 2 (GSTO2) on inorganic arsenics (InAs%) were found. Our results show that MMA% might be a potential predictor of cancer risk. The change in MMA% was linked to individual cancer susceptibility related to AS3MT rs3740393.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen CJ, Chen CW, Wu MM, Kuo TL (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66:888–892

    CAS  PubMed  Google Scholar 

  2. Chen CL, Hsu LI, Chiou HY et al (2004) Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan. JAMA 292:2984–2990

    Article  CAS  PubMed  Google Scholar 

  3. Chiou HY, Hsueh YM, Liaw KF et al (1995) Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res 55:1296–1300

    CAS  PubMed  Google Scholar 

  4. Hsueh YM, Chiou HY, Huang YL et al (1997) Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev 6:589–596

    CAS  PubMed  Google Scholar 

  5. Huang YK, Huang YL, Hsueh YM et al (2008) Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control 19:829–839

    Article  PubMed  Google Scholar 

  6. Lin S, Shi Q, Nix FB et al (2002) A novel S-adenosyl-L-methionine: arsenic (III) methyltransferase from rat liver cytosol. J Biol Chem 277:10795–10803

    Article  CAS  PubMed  Google Scholar 

  7. Thomas DJ, Li J, Waters SB et al (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp Biol Med (Maywood) 232:3–13

    CAS  Google Scholar 

  8. Drobna Z, Waters SB, Devesa V, Harmon AW, Thomas DJ, Styblo M (2005) Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase. Toxicol Appl Pharmacol 207:147–159

    Article  CAS  PubMed  Google Scholar 

  9. Drobna Z, Waters SB, Walton FS, LeCluyse EL, Thomas DJ, Styblo M (2004) Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes. Toxicol Appl Pharmacol 201:166–177

    Article  CAS  PubMed  Google Scholar 

  10. Drobna Z, Xing W, Thomas DJ, Styblo M (2006) shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells. Chem Res Toxicol 19:894–898

    Article  CAS  PubMed  Google Scholar 

  11. Wood TC, Salavagionne OE, Mukherjee B et al (2006) Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies. J Biol Chem 281:7364–7373

    Article  CAS  PubMed  Google Scholar 

  12. Mukherjee B, Salavaggione OE, Pelleymounter LL et al (2006) Glutathione S-transferase omega 1 and omega 2 pharmacogenomics. Drug Metab Dispos 34:1237–1246

    Article  CAS  PubMed  Google Scholar 

  13. Yu L, Kalla K, Guthrie E, Vidrine A, Klimecki WT (2003) Genetic variation in genes associated with arsenic metabolism: glutathione S-transferase omega 1–1 and purine nucleoside phosphorylase polymorphisms in European and indigenous Americans. Environ Health Perspect 111:1421–1427

    CAS  PubMed  Google Scholar 

  14. Chowdhury UK, Zakharyan RA, Hernandez A, Avram MD, Kopplin MJ, Aposhian HV (2006) Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol Appl Pharmacol 216:446–457

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez A, Xamena N, Surralles J et al (2008) Role of the Met(287)Thr polymorphism in the AS3MT gene on the metabolic arsenic profile. Mutat Res 637:80–92

    CAS  PubMed  Google Scholar 

  16. Schlawicke EK, Nermell B, Concha G, Stromberg U, Vahter M, Broberg K (2008) Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutat Res (Article in Press)

  17. Engstrom KS, Broberg K, Concha G, Nermell B, Warholm M, Vahter M (2007) Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect 115:599–605

    Google Scholar 

  18. Meza M, Gandolfi AJ, Klimecki WT (2007) Developmental and genetic modulation of arsenic biotransformation: a gene by environment interaction? Toxicol Appl Pharmacol 222:381–387

    Article  CAS  PubMed  Google Scholar 

  19. Fujihara J, Kunito T, Agusa T et al (2007) Population differences in the human arsenic (+3 oxidation state) methyltransferase (AS3MT) gene polymorphism detected by using genotyping method. Toxicol Appl Pharmacol 225:251–254

    Article  CAS  PubMed  Google Scholar 

  20. Fujihara J, Soejima M, Koda Y, Agusa T, Kunito T, Takeshita H (2008) Asian specific low mutation frequencies of the M287T polymorphism in the human arsenic (+3 oxidation state) methyltransferase (AS3MT) gene. Mutat Res 654:158–161

    CAS  PubMed  Google Scholar 

  21. Tapio S, Grosche B (2006) Arsenic in the aetiology of cancer. Mutat Res -Rev Mutat Res 612:215–246

    CAS  Google Scholar 

  22. Chen CJ, Hsueh YM, Lai MS et al (1995) Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25:53–60

    PubMed  Google Scholar 

  23. Hsueh YM, Huang YL, Huang CC et al (1998) Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. J Toxicol Environ Health 54:431–444

    Article  CAS  Google Scholar 

  24. Chen YC, Amarasiriwardena CJ, Hsueh YM, Christiani DC (2002) Stability of arsenic species and insoluble arsenic in human urine. Cancer Epidemiol Biomarkers Prev 11:1427–1433

    CAS  PubMed  Google Scholar 

  25. Steinmaus C, Bates MN, Yuan Y et al (2006) Arsenic methylation and bladder cancer risk in case–control studies in Argentina and the United States. J Occup Environ Med 48:478–488

    Article  CAS  PubMed  Google Scholar 

  26. Yu RC, Hsu KH, Chen CJ, Froines JR (2000) Arsenic methylation capacity and skin cancer. Cancer Epidemiol Biomarkers Prev 9:1259–1262

    CAS  PubMed  Google Scholar 

  27. Radabaugh TR, Sampayo-Reyes A, Zakharyan RA, Aposhian HV (2002) Arsenate reductase II. Purine nucleoside phosphorylase in the presence of dihydrolipoic acid is a route for reduction of arsenate to arsenite in mammalian systems. Chem Res Toxicol 15:692–698

    Article  CAS  PubMed  Google Scholar 

  28. De CS, Ghosh P, Sarma N et al (2008) Genetic variants associated with arsenic susceptibility: study of purine nucleoside phosphorylase, arsenic (+3) methyltransferase, and glutathione s-transferase omega genes. Environ Health Perspect 116:501–505

    Google Scholar 

  29. Marahatta SB, Punyarit P, Bhudisawasdi V, Paupairoj A, Wongkham S, Petmitr S (2006) Polymorphism of glutathione S-transferase omega gene and risk of cancer. Cancer Lett 236:276–281

    Article  CAS  PubMed  Google Scholar 

  30. Whitbread AK, Tetlow N, Eyre HJ, Sutherland GR, Board PG (2003) Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics 13:131–144

    Article  CAS  PubMed  Google Scholar 

  31. Arning L, Jagiello P, Wieczorek S, Saft C, Andrich J, Epplen JT (2004) Glutathione S-Transferase Omega 1 variation does not influence age at onset of Huntington’s disease. BMC Med Genet 5:7–10

    Article  PubMed  Google Scholar 

  32. Morari EC, Lima AB, Bufalo NE, Leite JL, Granja F, Ward LS (2006) Role of glutathione-S-transferase and codon 72 of P53 genotypes in epithelial ovarian cancer patients. J Cancer Res Clin Oncol 132:521–528

    Article  CAS  PubMed  Google Scholar 

  33. Ahsan H, Chen Y, Kibriya MG et al (2007) Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol Biomarkers Prev 16:1270–1278

    Article  CAS  PubMed  Google Scholar 

  34. Lindberg AL, Kumar R, Goessler W et al (2007) Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect 115:1081–1086

    Article  CAS  PubMed  Google Scholar 

  35. Leite JL, Morari EC, Granja F, Campos GM, Guilhen AC, Ward LS (2007) Influence of the glutathione s-transferase gene polymorphisms on the susceptibility to basal cell skin carcinoma. Rev Med Chil 135:301–306

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the National Science Council of the ROC (NSC 86-2314-B-038-038, NSC 87-2314-B-038-029, NSC-88-2314-B-038-112, NSC-89-2314-B038-049, SC-89-2320-B038-013, NSC-90-2320-B-038-021, NSC91-3112-B-038-0019, NSC92-3112-B-038-001, NSC93-3112-B-038-001, NSC94-2314-B-038-023, NSC-95-2314-B-038-007, NSC- 96-2314-B038-003 and NSC 97-2314-B-038-015-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Mei Hsueh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, CJ., Hsueh, YM., Bai, CH. et al. Polymorphisms in arsenic metabolism genes, urinary arsenic methylation profile and cancer. Cancer Causes Control 20, 1653–1661 (2009). https://doi.org/10.1007/s10552-009-9413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-009-9413-0

Keywords

Navigation