Skip to main content

Advertisement

Log in

Exogenous normal mammary epithelial mitochondria suppress glycolytic metabolism and glucose uptake of human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We hypothesized that normal mitochondria inhibited cancer cell proliferation and increased drug sensitivity by the mechanism of suppression of cancer aerobic glycolysis. To demonstrate the mechanism, we used real-time PCR and glycolysis cell-based assay to measure gene expression of glycolytic enzymes and glucose transporters, and extracellular lactate production of human breast cancer cells. We found that isolated fluorescent probe-stained mitochondria of MCF-12A (human mammary epithelia) could enter into human breast cancer cell lines MCF-7, T47D, and MDA-MB-231, confirmed by fluorescent and confocal microscopy. Mitochondria from the untransformed human mammary epithelia increased drug sensitivity of MCF-7 cells to paclitaxel. Real-time PCR showed that exogenous normal mitochondria of MCF-12A suppressed gene expression of glycolytic enzymes, lactate dehydrogenase A, and glucose transporter 1 and 3 of MCF-7 and MDA-MB-231 cells. Glycolysis cell-based assay revealed that normal mitochondria significantly suppressed lactate production in culture media of MCF-7, T47D, and MDA-MB-231 cells. In conclusion, normal mitochondria suppress cancer proliferation and increase drug sensitivity by the mechanism of inhibition of cancer cell glycolysis and glucose uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RT-qPCR:

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR)

OXPHOS:

Oxidative phosphorylation

ATP:

Adenosine triphosphate

JC-1:

5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide

SLC2A1:

Glucose transporter 1

SLC2A3:

Glucose transporter 3

ALDOC:

Aldolase A

ENO1:

Enolase 1

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GPI:

Glucose-6-phosphate isomerase

HK2:

Hexokinase

PFKM:

Phosphofructokinase-1

PGK1:

Phosphoglycerate kinase 1

PKM2:

Pyruvate kinase

TMI:

Triosephosphate isomerase 1

LDHA:

Lactate dehydrogenase A

NADH:

Nicotinamide adenine dinucleotide

References

  1. Warburg O (1965) On the origin of cancer cells. Science 123:309–314

    Article  Google Scholar 

  2. Vender Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirement of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  3. Fogg VC, Lanning NJ, MacKeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30:526–539. doi:10.5732/cjc.011.10018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  PubMed  Google Scholar 

  5. Hirschhaeuser F, Sattler UGA, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925

    Article  CAS  PubMed  Google Scholar 

  6. Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Investig 123:3685–3692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Choi SYC, Collins CC, Gout PW, Wang Y (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230:350–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  9. Elstrom R, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Caner Res 64:3892–3899

    Article  CAS  Google Scholar 

  10. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15:6479–6483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  Google Scholar 

  13. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Elliott RL, Jiang XP, Head JF (2012) Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res Treat 136:347–354

    Article  CAS  PubMed  Google Scholar 

  15. Racker E (1974) History of the Pasteur effect and its pathobiology. Mol Cell Biochem 5:17–23

    Article  CAS  PubMed  Google Scholar 

  16. Czernin J, Phelps ME (2002) Positron emission tomography scanning: current and future application. Ann Rev Med 53:89–112

    Article  CAS  PubMed  Google Scholar 

  17. Bos R, Jacobus JM, van der Hoevenet E et al (2002) Biologic correlates of 18flurodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387

    Article  CAS  PubMed  Google Scholar 

  18. Burt BM, Humm JL, Kooby DA et al (2001) Using positron emission tomography with [18F]EDG to predict tumor behavior in experimental colorectal cancer. Neoplasia 3:189–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  20. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921

    CAS  PubMed  Google Scholar 

  21. Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4(e532):1–10. doi:10.1038/cddis.2013.60

    CAS  Google Scholar 

  22. Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O et al (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitize taxol-resistant cancer cells to taxol. Mol Cancer 9:33. doi:10.1186/1476-4598-9-33

    Article  PubMed Central  PubMed  Google Scholar 

  23. Xu RH, Pelicano H, Zhou Y et al (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    Article  CAS  PubMed  Google Scholar 

  24. Jang M, Kim SS, Lee J (2013) Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45:e45. doi:10.1038/emm.2013.85

    Article  PubMed Central  PubMed  Google Scholar 

  25. Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidemarsh DF (2004) 2-deoxy-d-glucose increases the efficacy of Adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64:31–34

    Article  CAS  PubMed  Google Scholar 

  26. Elliot RL, Barnett BG (2011) Ultrastructural observations of mitochondria in human breast carcinoma cells. Microsc Microanal 1752:194–195

    Article  Google Scholar 

  27. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    Article  PubMed Central  PubMed  Google Scholar 

  28. Penta JS, Johnson FM, Wachsman TJ, Copeland WC (2001) Mitochondrial DNA in human malignancy. Mutat Res 488:119–133

    Article  CAS  PubMed  Google Scholar 

  29. Arnold RS, Fedewa SA, Goodman M, Osunkoya AO, Kissick HT, Morrissey C, True LD, Petros JA (2015) Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone 78:81–86. doi:10.1016/j.bone.2015.04.046

    Article  CAS  PubMed  Google Scholar 

  30. Shildum A, Dornfeld K (2011) Mitochondrial amplification selectively increases doxorubicin sensitivity in breast cancer cells with acquired antiestrogen resistance. Breast Cancer Res Treat 129:785–797

    Article  Google Scholar 

  31. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:E242–E253. doi:10.1152/ajpendo.90388.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kitani TL, Kami D, Matoba S, Gojo S (2014) Internalization of isolated functional mitochondria: involvement of macropinocytosis. J Cell Mol Med 18:1694–1703. doi:10.1111/jcmm.12316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by funds from The Sallie Astor Burdine and Delta State University Foundations, Baton Rouge, Louisiana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Peng Jiang.

Ethics declarations

Conflict of interest

No conflicting financial interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, XP., Elliott, R.L. & Head, J.F. Exogenous normal mammary epithelial mitochondria suppress glycolytic metabolism and glucose uptake of human breast cancer cells. Breast Cancer Res Treat 153, 519–529 (2015). https://doi.org/10.1007/s10549-015-3583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3583-0

Keywords

Navigation