Skip to main content

Advertisement

Log in

A Reliability Study on Brain Activation During Active and Passive Arm Movements Supported by an MRI-Compatible Robot

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In neurorehabilitation, longitudinal assessment of arm movement related brain function in patients with motor disability is challenging due to variability in task performance. MRI-compatible robots monitor and control task performance, yielding more reliable evaluation of brain function over time. The main goals of the present study were first to define the brain network activated while performing active and passive elbow movements with an MRI-compatible arm robot (MaRIA) in healthy subjects, and second to test the reproducibility of this activation over time. For the fMRI analysis two models were compared. In model 1 movement onset and duration were included, whereas in model 2 force and range of motion were added to the analysis. Reliability of brain activation was tested with several statistical approaches applied on individual and group activation maps and on summary statistics. The activated network included mainly the primary motor cortex, primary and secondary somatosensory cortex, superior and inferior parietal cortex, medial and lateral premotor regions, and subcortical structures. Reliability analyses revealed robust activation for active movements with both fMRI models and all the statistical methods used. Imposed passive movements also elicited mainly robust brain activation for individual and group activation maps, and reliability was improved by including additional force and range of motion using model 2. These findings demonstrate that the use of robotic devices, such as MaRIA, can be useful to reliably assess arm movement related brain activation in longitudinal studies and may contribute in studies evaluating therapies and brain plasticity following injury in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkadhi H, Crelier GR, Boendermaker SH, Golay X, Hepp-Reymond M-C, Kollias SS (2002) Reproducibility of primary motor cortex somatotopy under controlled conditions. Am J Neuroradiol 23(9):1524–1532

    PubMed  Google Scholar 

  • Annett M (1970) A classification of hand preference by association analysis. Brit J Psychol 61(3):303–321

    Article  PubMed  CAS  Google Scholar 

  • Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113

    Article  PubMed  Google Scholar 

  • Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191(1):133–155

    Article  PubMed  Google Scholar 

  • Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7(2):106–114

    Article  PubMed  CAS  Google Scholar 

  • Caceres A, Hall DL, Zelaya FO, Williams SCR, Mehta MA (2009) Measuring fMRI reliability with the intra-class correlation coefficient. Neuroimage 45(3):758–768

    Article  PubMed  Google Scholar 

  • Carey LM, Abbott DF, Egan GF, Tochon-Danguy HJ, Donnan GA (2000) The functional neuroanatomy and long-term reproducibility of brain activation associated with a simple finger tapping task in older healthy volunteers: a serial PET study. Neuroimage 11(2):124–144

    Article  PubMed  CAS  Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33(2):430–448

    Article  PubMed  Google Scholar 

  • Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212(6):481–495

    Article  PubMed  Google Scholar 

  • Cicchetti DV, Sparrow SA (1981) Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior. Am J Ment Defic 86(2):127–137

    PubMed  CAS  Google Scholar 

  • Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46(1):39–46

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006a) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16(2):254–267

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006b) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16(2):268–279

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Paus T, Caspers S, Grosbras M-H, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521

    Article  PubMed  Google Scholar 

  • Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, Gollub RL, Lauriello J, Lim KO, Cannon T, Greve DN, Bockholt HJ, Belger A, Mueller B, Doty MJ, He J, Wells W, Smyth P, Pieper S, Kim S, Kubicki M, Vangel M, Potkin SG (2008) Test-retest and between-site reliability in a multicenter fMRI study. Hum Brain Mapp 29(8):958–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174(I-VIII):1–89

    Article  CAS  Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382(6594):805–807

    Article  PubMed  CAS  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 10(1):63–83

    Article  PubMed  CAS  Google Scholar 

  • Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 11(6):684–696

    Article  PubMed  CAS  Google Scholar 

  • Gountouna V-E, Job DE, McIntosh AM, Moorhead TWJ, Lymer GKL, Whalley HC, Hall J, Waiter GD, Brennan D, McGonigle DJ, Ahearn TS, Cavanagh J, Condon B, Hadley DM, Marshall I, Murray AD, Steele JD, Wardlaw JM, Lawrie SM (2010) Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage 49(1):552–560

    Article  PubMed  Google Scholar 

  • Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14(3):617–631

    Article  PubMed  CAS  Google Scholar 

  • Hollnagel C, Brugger M, Vallery H, Wolf P, Dietz V, Kollias S, Riener R (2011) Brain activity during stepping: a novel MRI-compatible device. J Neurosci Meth 201(1):124–130

    Article  Google Scholar 

  • Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27(10):779–788

    Article  PubMed  Google Scholar 

  • Kimberley TJ, Birkholz DD, Hancock RA, VonBank SM, Werth TN (2008a) Reliability of fMRI during a continuous motor task: assessment of analysis techniques. J Neuroimaging 18(1):18–27

    Article  PubMed  Google Scholar 

  • Kimberley TJ, Khandekar G, Borich M (2008b) fMRI Reliability in subjects with stroke. Exp Brain Res 186(1):183–190

    Article  PubMed  Google Scholar 

  • Kocak M, Ulmer JL, Sahin Ugurel M, Gaggl W, Prost RW (2009) Motor homunculus: passive mapping in healthy volunteers by using functional MR imaging–initial results. Radiology 251(2):485–492

    Article  PubMed  Google Scholar 

  • Kong J, Gollub RL, Webb JM, Kong J-T, Vangel MG, Kwong K (2007) Test-retest study of fMRI signal change evoked by electroacupuncture stimulation. Neuroimage 34(3):1171–1181

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JN, Hsu EW, Rashkin E, Thatcher JW, Kreitschitz S, Gale P, Healy L, Marchand WR (2010) Reliability of fMRI motor tasks in structures of the corticostriatal circuitry: implications for future studies and circuit function. Neuromage 49(2):1282–1288

    Article  Google Scholar 

  • Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F (2001) Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 21(5):592–607

    Article  PubMed  CAS  Google Scholar 

  • Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239

    Article  PubMed  Google Scholar 

  • Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31(4):1453–1474

    Article  PubMed  PubMed Central  Google Scholar 

  • McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP (2000) Variability in fMRI: an examination of intersession differences. Neuroimage 11(6 Pt 1):708–734

    Article  PubMed  CAS  Google Scholar 

  • McGregor KM, Carpenter H, Kleim E, Sudhyadhom A, White KD, Butler AJ, Kleim J, Crosson B (2012) Motor map reliability and aging: a TMS/fMRI study. Exp Brain Res 219(1):97–106

    Article  PubMed  Google Scholar 

  • Raemaekers M, Vink M, Zandbelt B, van Wezel RJA, Kahn RS, Ramsey NF (2007) Test–retest reliability of fMRI activation during prosaccades and antisaccades. Neuroimage 36(3):532–542

    Article  PubMed  CAS  Google Scholar 

  • Rombouts SA, Barkhof F, Hoogenraad FG, Sprenger M, Scheltens P (1998) Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging. Magn Reson Imaging 16(2):105–113

    Article  PubMed  CAS  Google Scholar 

  • Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18(9):2141–2157

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18(4):846–867

    Article  PubMed  Google Scholar 

  • Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  PubMed  CAS  Google Scholar 

  • Specht K, Willmes K, Shah NJ, Jäncke L (2003) Assessment of reliability in functional imaging studies. J Magn Reson Imaging 17(4):463–471

    Article  PubMed  Google Scholar 

  • Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Ann Rev Biomed Eng 9:351–387

    Article  CAS  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Étard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  PubMed  CAS  Google Scholar 

  • Weiller C, Jüptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Müller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4(2):105–110

    Article  PubMed  CAS  Google Scholar 

  • Yoo S–S, O’Leary HM, Lee J-H, Chen N-K, Panych LP, Jolesz FA (2007) Reproducibility of trial-based functional MRI on motor imagery. Int J Neurosci 117(2):215–227

    Article  PubMed  Google Scholar 

  • Yu N, Hollnagel C, Blickenstorfer A, Kollias SS, Riener R (2008) Comparison of MRI-compatible mechatronic systems with hydrodynamic and pneumatic actuation. IEEE Asme T Mech 13(3):268–277

    Article  CAS  Google Scholar 

  • Yu N, Hollnagel C, Wolf P, Murr W, Blickenstorfer A, Kollias S, Riener R (2009) Tracking and analysis of human head motion during guided fMRI motor tasks. IEEE ICORR 2009:588–593

    Google Scholar 

  • Yu N, Estévez N, Hepp-Reymond M-C, Kollias SS, Riener R (2011) fMRI Assessment of upper extremity related brain activation with an MRI-compatible manipulandum. Int J Comput Assist Radiol Surg 6(3):447–455

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Center of Competence in Research (NCCR) on Neural Plasticity and Repair, launched by the Swiss National Science Foundation (SNF), and by the ETH Research Grant TH-34 06-3 MR-robotics. The authors thank Dr. Birgit Keisker, Prof. Roger Gassert, Prof. Martin Meyer and Dr. Christoph Hollnagel for their helpful advice and comments as well as Dr. Roger Lüchinger for his technical support in the MR center. Special thanks go to all the participants of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Estévez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estévez, N., Yu, N., Brügger, M. et al. A Reliability Study on Brain Activation During Active and Passive Arm Movements Supported by an MRI-Compatible Robot. Brain Topogr 27, 731–746 (2014). https://doi.org/10.1007/s10548-014-0355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0355-9

Keywords

Navigation