Skip to main content
Log in

Coupling Between Resting Cerebral Perfusion and EEG

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

While several studies have investigated interactions between the electroencephalography (EEG) and functional magnetic resonance imaging BOLD signal fluctuations, less is known about the associations between EEG oscillations and baseline brain haemodynamics, and few studies have examined the link between EEG power outside the alpha band and baseline perfusion. Here we compare whole-brain arterial spin labelling perfusion MRI and EEG in a group of healthy adults (n = 16, ten females, median age: 27 years, range 21–48) during an eyes closed rest condition. Correlations emerged between perfusion and global average EEG power in low (delta: 2–4 Hz and theta: 4–7 Hz), middle (alpha: 8–13 Hz), and high (beta: 13–30 Hz and gamma: 30–45 Hz) frequency bands in both cortical and sub-cortical regions. The correlations were predominately positive in middle and high-frequency bands, and negative in delta. In addition, central alpha frequency positively correlated with perfusion in a network of brain regions associated with the modulation of attention and preparedness for external input, and central theta frequency correlated negatively with a widespread network of cortical regions. These results indicate that the coupling between average EEG power/frequency and local cerebral blood flow varies in a frequency specific manner. Our results are consistent with longstanding concepts that decreasing EEG frequencies which in general map onto decreasing levels of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASL:

Arterial spin labeling

BA:

Brodmann area

BOLD:

Blood oxygenation level dependent

EEG:

Electroencephalogram

FDG:

Fluoro-deoxyglucose

FWE:

Family-wise error

fMRI:

Functional magnetic resonance imaging

ICA:

Independent component analysis

MEG:

Magnetoencephalography

MNI:

Montreal neurological institute

MRT:

Magnetic resonance tomography

References

  • Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15:488–500

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT (2008) Probing the mind: anesthesia and neuroimaging. Clin Pharmacol Ther 84:149–152

    Article  PubMed  CAS  Google Scholar 

  • Almeida R, Stetter M (2002) Modeling the link between functional imaging and neuronal activity: synaptic metabolic demand and spike rates. Neuroimage 17:1065–1079

    Article  PubMed  Google Scholar 

  • Alper KR, John ER, Brodie J, Günther W, Daruwala R, Prichep LS (2006) Correlation of PET and qEEG in normal subjects. Psychiatry Res 146:271–282

    Article  PubMed  Google Scholar 

  • Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249

    Article  PubMed  CAS  Google Scholar 

  • Axmacher N, Mormann F, Fernández G, Elger CE, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev 52:170–182

    Article  PubMed  Google Scholar 

  • Bakhtadze MA, Vernon H, Karalkin AV, Pasha SP, Tomashevskiy IO, Soave D (2012) Cerebral perfusion in patients with chronic neck and upper back pain: preliminary observations. J Manipulative Physiol Ther 35:76–85

    Article  PubMed  Google Scholar 

  • Bartlett EJ, Brodie JD, Wolf AP, Christman DR, Laska E, Meissner M (1988) Reproducibility of cerebral glucose metabolic measurements in resting human subjects. J Cereb Blood Flow Metab 8:502–512

    Article  PubMed  CAS  Google Scholar 

  • Ben-Simon E, Podlipsky I, Arieli A, Zhdanov A, Hendler T (2008) Never resting brain: simultaneous representation of two alpha related processes in humans. PLoS One 3:e3984

    Article  PubMed  CAS  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11:80–93

    Article  PubMed  CAS  Google Scholar 

  • Brem S, Bach S, Kucian K, Guttorm TK, Martin E, Lyytinen H, Brandeis D, Richardson U (2010) Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proc Natl Acad Sci USA 107:7939

    Article  PubMed  CAS  Google Scholar 

  • Brown GG, Perthen JE, Liu TT, Buxton RB (2007) A primer on functional magnetic resonance imaging. Neuropsychol Rev 17:107–125

    Article  PubMed  Google Scholar 

  • Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44:195–208

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  PubMed  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Chamberlain SR, Hampshire A, Müller U, Rubia K, Del Campo N, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE et al (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555

    Article  PubMed  CAS  Google Scholar 

  • Dai W, Garcia D, De Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    Article  PubMed  Google Scholar 

  • Danos P, Guich S, Abel L, Buchsbaum MS (2001) EEG alpha rhythm and glucose metabolic rate in the thalamus in schizophrenia. Neuropsychobiology 43:265–272

    Article  PubMed  CAS  Google Scholar 

  • De Lange FP, Jensen O, Bauer M, Toni I (2008) Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front Hum Neurosci 2:7

    PubMed  Google Scholar 

  • De Munck JC, Goncalves SI, Huijboom L, Kuijer JPA, Pouwels PJW, Heethaar RM, Lopes da Silva FH (2007) The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 35:1142–1151

    Article  PubMed  Google Scholar 

  • De Munck JC, Goncalves SI, Faes TJC, Kuijer JPA, Pouwels PJW, Heethaar RM, Lopes da Silva FH (2008) A study of the brain’s resting state based on alpha band power, heart rate and fMRI. Neuroimage 42:112–121

    Article  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Dierks T, Jelic V, Pascual-Marqui RD, Wahlund LO, Julin P, Linden DEJ, Maurer K, Winblad B, Nordberg A (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824

    Article  PubMed  CAS  Google Scholar 

  • Duong TQ, Kim DS, Uğurbil K, Kim SG (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 98:10904

    Article  PubMed  CAS  Google Scholar 

  • Dustman RE, Shearer DE, Emmerson RY (1999) Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency. Clin Neurophysiol 110:1399–1409

    Article  PubMed  CAS  Google Scholar 

  • Eichele T, Specht K, Moosmann M, Jongsma MLA, Quiroga RQ, Nordby H, Hugdahl K (2005) Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 102:17798

    Article  PubMed  CAS  Google Scholar 

  • Fedor M, Berman RF, Muizelaar JP, Lyeth BG (2010) Hippocampal theta dysfunction after lateral fluid percussion injury. J Neurotrauma 27:1605–1615

    Article  PubMed  Google Scholar 

  • Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93:2864–2872

    Article  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  PubMed  CAS  Google Scholar 

  • Fox MD, Snyder AZ, McAvoy MP, Barch DM, Raichle ME (2005) The BOLD onset transient: identification of novel functional differences in schizophrenia. Neuroimage 25:771–782

    Article  PubMed  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13:2487

    Article  PubMed  Google Scholar 

  • Goncalves SI, De Munck JC, Pouwels PJW, Schoonhoven R, Kuijer JPA, Maurits NM, Hoogduin JM, Van Someren EJW, Heethaar RM, Lopes da Silva FH (2006) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage 30:203–213

    Article  PubMed  CAS  Google Scholar 

  • Gruber T, Keil A, Müller MM (2001) Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. Neurosci Lett 316:29–32

    Article  PubMed  CAS  Google Scholar 

  • Gusnard DA, Raichle ME, Raichle ME et al (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  PubMed  CAS  Google Scholar 

  • Halder P, Sterr A, Brem S, Bucher K, Kollias S, Brandeis D (2005) Electrophysiological evidence for cortical plasticity with movement repetition. Eur J Neurosci 21:2271–2277

    Article  PubMed  Google Scholar 

  • Hoge RD, Pike GB (2001) Oxidative metabolism and the detection of neuronal activation via imaging. J Chem Neuroanat 22:43–52

    Article  PubMed  CAS  Google Scholar 

  • Ingvar DH, Sjölund B, Ardö A (1976) Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroencephalogr Clin Neurophysiol 41:268–276

    Article  PubMed  CAS  Google Scholar 

  • Ingvar DH, Rosén I, Johannesson G (1979) EEG related to cerebral metabolism and blood flow. Pharmacopsychiatry 12:200–209

    Article  CAS  Google Scholar 

  • Jahng GH, Song E, Zhu XP, Matson GB, Weiner MW, Schuff N (2005) Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging1. Radiology 234:909–916

    Article  PubMed  Google Scholar 

  • Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T (2009) BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage 45:903–916

    Article  PubMed  CAS  Google Scholar 

  • Jann K, Koenig T, Dierks T, Boesch C, Federspiel A (2010) Association of individual resting state EEG alpha frequency and cerebral blood flow. Neuroimage 51:365–372

    Article  PubMed  Google Scholar 

  • Järnum H, Steffensen EG, Knutsson L, Fründ ET, Simonsen CW, Lundbye-Christensen S, Shankaranarayanan A, Alsop DC, Jensen FT, Larsson EM (2010) Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 52:307–317

    Article  PubMed  Google Scholar 

  • Jelic V, König T, Dierks T, Nordberg A, Wahlund L-O (2002) Electroencephalography and glucose metabolism (positron-emission tomography) in dementing disorders. Methods Find Exp Clin Pharmacol 24:21

    PubMed  Google Scholar 

  • Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11:267–269

    Article  PubMed  Google Scholar 

  • Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12:877–882

    Article  PubMed  Google Scholar 

  • Jokisch D, Jensen O (2007) Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci 27:3244–3251

    Article  PubMed  CAS  Google Scholar 

  • Jung TP, Makeig S, Humphries C, Lee TW, Mckeown MJ, Iragui V, Sejnowski TJ (2000a) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178

    Article  PubMed  CAS  Google Scholar 

  • Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000b) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111:1745–1758

    Article  PubMed  CAS  Google Scholar 

  • Kida I, Hyder F et al (2006) Physiology of functional magnetic resonance imaging: energetics and function. Methods Mol Med 124:175

    PubMed  Google Scholar 

  • Kim J, Whyte J, Patel S, Europa E, Slattery J, Coslett HB, Detre JA (2012) A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabil Neural Repair 26:870–880

    Article  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195

    Article  PubMed  CAS  Google Scholar 

  • Klimesch et al (1999) Interindividual differences in alpha and theta power reflect memory performance. Intelligence 27(4):347–362

  • Kondacs A, Szabó M (1999) Long-term intra-individual variability of the background EEG in normals. Clin Neurophysiol 110:1708–1716

    Article  PubMed  CAS  Google Scholar 

  • Koukkou M, Federspiel A, Bräker E, Hug C, Kleinlogel H, Merlo MCG, Lehmann D (2000) An EEG approach to the neurodevelopmental hypothesis of schizophrenia studying schizophrenics, normal controls and adolescents. J Psychiatr Res 34:57–73

    Article  PubMed  CAS  Google Scholar 

  • Kranczioch C, Debener S, Herrmann CS, Engel AK (2006) EEG gamma-band activity in rapid serial visual presentation. Exp Brain Res 169:246–254

    Article  PubMed  Google Scholar 

  • Kuhl BA, Dudukovic NM, Kahn I, Wagner AD (2007) Decreased demands on cognitive control reveal the neural processing benefits of forgetting. Nat Neurosci 10:908–914

    Article  PubMed  CAS  Google Scholar 

  • Kuschinsky W, Bünger R, Schröck H, Mallet RT, Sokoloff L (1993) Local glucose utilization and local blood flow in hearts of awake rats. Basic Res Cardiol 88:233–249

    PubMed  CAS  Google Scholar 

  • Larson CL, Davidson RJ, Abercrombie HC, Ward RT, Schaefer SM, Jackson DC, Holden JE, Perlman SB (1998) Relations between PET-derived measures of thalamic glucose metabolism and EEG alpha power. Psychophysiology 35:162–169

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003a) EEG-correlated fMRI of human alpha activity. Neuroimage 19:1463–1476

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003b) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100:11053

    Article  PubMed  CAS  Google Scholar 

  • Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A (2006) Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31:1408–1418

    Article  PubMed  CAS  Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621

    Article  PubMed  CAS  Google Scholar 

  • Lindgren KA, Larson CL, Schaefer SM, Abercrombie HC, Ward RT, Oakes TR, Holden JE, Perlman SB, Benca RM, Davidson RJ (1999) Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients. Biol Psychiatry 45:943–952

    Article  PubMed  CAS  Google Scholar 

  • Lisman J (2010) Working memory: the importance of theta and gamma oscillations. Curr Biol 20(11):R490–R492

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhu XH, Zhang Y, Chen W (2011) Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb Cortex 21:374–384

    Article  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Lüchinger R, Michels L, Martin E, Brandeis D (2011) EEG-BOLD correlations during (post-) adolescent brain maturation. Neuroimage 56:1493–1505

    Article  PubMed  Google Scholar 

  • Lüchinger R, Michels L, Martin E, Brandeis D (2012) Brain state regulation during normal development: intrinsic activity fluctuations in simultaneous EEG-fMRI. Neuroimage 60:1426–1439

    Article  PubMed  Google Scholar 

  • Maltez J, Hyllienmark L, Nikulin VV, Brismar T (2004) Time course and variability of power in different frequency bands of EEG during resting conditions. Neurophysiol Clin 34:195–202

    Article  PubMed  Google Scholar 

  • Mathiesen C, Caesar K, Akgören N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J F Physiol 512:555–566

    Article  CAS  Google Scholar 

  • Maurer U, Brem S, Bucher K, Kranz F, Benz R, Steinhausen HC, Brandeis D (2007) Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain 130:3200–3210

    Article  PubMed  Google Scholar 

  • Mayhew SD, Macintosh BJ, Dirckx SG, Iannetti GD, Wise RG (2010) Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation. Magn Reson Imaging 28:1066–1077

    Article  PubMed  Google Scholar 

  • Meltzer JA, Negishi M, Mayes LC, Constable RT (2007) Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol 118:2419–2436

    Article  PubMed  Google Scholar 

  • Meltzer JA, Fonzo GA, Constable RT (2009) Transverse patterning dissociates human EEG theta power and hippocampal BOLD activation. Psychophysiology 46:153–162

    Article  PubMed  Google Scholar 

  • Michels L, Bucher K, Lüchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One 5:e10298

    Article  PubMed  CAS  Google Scholar 

  • Michels L, Luchinger R, Koenig T, Martin E, Brandeis D (2012) Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory. PLoS One 7:e39447

    Article  PubMed  CAS  Google Scholar 

  • Montez T, Poil SS, Jones BF, Manshanden I, Verbunt J, Van Dijk BW, Brussaard AB, Van Ooyen A, Stam CJ, Scheltens P et al (2009) Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc Natl Acad Sci USA 106:1614

    Article  PubMed  CAS  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20:145–158

    Article  PubMed  Google Scholar 

  • Moretti DV, Babiloni C, Binetti G, Cassetta E, Dal Forno G, Ferreric F, Ferri R, Lanuzza B, Miniussi C, Nobili F et al (2004) Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin Neurophysiol 115:299–308

    Article  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Edden RAE, Jones DK, Swettenham JB, Singh KD (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci USA 106:8356

    Article  PubMed  CAS  Google Scholar 

  • Nagata K (1988) Topographic EEG in brain ischemia-Correlation with blood flow and metabolism. Brain Topogr 1:97–106

    Article  PubMed  CAS  Google Scholar 

  • Näpflin M, Wildi M, Sarnthein J (2007) Test–retest reliability of resting EEG spectra validates a statistical signature of persons. Clin Neurophysiol 118:2519–2524

    Article  PubMed  Google Scholar 

  • Niedermeyer E, Silva FHLD (2005) Electroencephalography: basic Principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RAW (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951

    Article  PubMed  CAS  Google Scholar 

  • Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, Malach R (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:1275–1285

    Article  PubMed  CAS  Google Scholar 

  • O’Gorman R, Coward H, Zelaya F, Alsop DC, Williams SCR (2007) Reproducibility of pseudo-continuous ASL at 1.5T and 3T. ISMRM 15:1419

    Google Scholar 

  • Oakes TR, Pizzagalli DA, Hendrick AM, Horras KA, Larson CL, Abercrombie HC, Schaefer SM, Koger JV, Davidson RJ (2004) Functional coupling of simultaneous electrical and metabolic activity in the human brain. Hum Brain Mapp 21:257–270

    Article  PubMed  Google Scholar 

  • Obata T, Liu TT, Miller KL, Luh WM, Wong EC, Frank LR, Buxton RB (2004) Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. Neuroimage 21:144–153

    Article  PubMed  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    Article  PubMed  CAS  Google Scholar 

  • Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51:736–743

    Article  PubMed  Google Scholar 

  • Pilgreen KL (1995) Physiologic, medical, and cognitive correlates of electroencephalography. Neocortical dynamics and human EEG rhythms. Oxford University Press, New York, pp 195–248

    Google Scholar 

  • Pollack JB (1991) The induction of dynamical recognizers. Mach Learn 7:227–252

    Google Scholar 

  • Poulos M, Rangoussi M, Alexandris N, Evangelou A (2002) Person identification from the EEG using nonlinear signal classification. Methods Inf Med 41:64–75

    PubMed  CAS  Google Scholar 

  • Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE (2001) Gating of human theta oscillations by a working memory task. J Neurosci 21:3175–3183

    PubMed  CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676

    Article  PubMed  CAS  Google Scholar 

  • Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30:1168–1187

    Article  PubMed  Google Scholar 

  • Sadato N, Nakamura S, Oohashi T, Nishina E, Fuwamoto Y, Waki A, Yonekura Y (1998) Neural networks for generation and suppression of alpha rhythm: a PET study. Neuroreport 9:893

    Article  PubMed  CAS  Google Scholar 

  • Salinsky MC, Oken BS, Morehead L (1991) Test–retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79:382–392

    Article  PubMed  CAS  Google Scholar 

  • Sammer G, Blecker C, Gebhardt H, Bischoff M, Stark R, Morgen K, Vaitl D (2007) Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload. Hum Brain Mapp 28:793–803

    Article  PubMed  Google Scholar 

  • Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129:55–64

    Article  PubMed  Google Scholar 

  • Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen M (2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44:1224–1238

    Article  PubMed  Google Scholar 

  • Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen M (2011) Neuronal dynamics underlying high-and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583

    Article  PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL, Hyder F (2007) A BOLD search for baseline. Neuroimage 36:277–281

    Article  PubMed  Google Scholar 

  • Speckman EJ, Elger CE, Altrup U (1993) Neurophysiologic basis of the EEG. The treatment of epilepsy: principles and practices. Lea and Febiger, Philadelphia

    Google Scholar 

  • Stassen HH (1980) Computerized recognition of persons by EEG spectral patterns. Electroencephalogr Clin Neurophysiol 49:190–194

    Article  PubMed  CAS  Google Scholar 

  • Suckling J, Bullmore E (2004) Permutation tests for factorially designed neuroimaging experiments. Hum Brain Mapp 22:193–205

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme, Stuttgart

    Google Scholar 

  • Tjandra T, Brooks JCW, Figueiredo P, Wise R, Matthews PM, Tracey I (2005) Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design. Neuroimage 27:393–401

    Article  PubMed  Google Scholar 

  • Tuladhar AM, Huurne N, Schoffelen JM, Maris E, Oostenveld R, Jensen O (2007) Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp 28:785–792

    Article  PubMed  Google Scholar 

  • Tyvaert L, LeVan P, Grova C, Dubeau F, Gotman J (2008) Effects of fluctuating physiological rhythms during prolonged EEG-fMRI studies. Clin Neurophysiol 119:2762–2774

    Article  PubMed  Google Scholar 

  • Uludag K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB (2004) Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23:148–155

    Article  PubMed  Google Scholar 

  • Van der Werf J, Jensen O, Fries P, Medendorp WP (2008) Gamma-band activity in human posterior parietal cortex encodes the motor goal during delayed prosaccades and antisaccades. J Neurosci 28:8397–8405

    Article  CAS  Google Scholar 

  • Vural C, Yildiz M (2010) Determination of sleep stage separation ability of features extracted from EEG signals using principle component analysis. J Med Syst 34:83–89

    Article  PubMed  Google Scholar 

  • Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA (2003) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49:796–802

    Article  PubMed  Google Scholar 

  • Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA (2005) Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study1. Radiology 235:218–228

    Article  PubMed  Google Scholar 

  • Wastling SJ, O’Daly O, Zelaya O, Howard M, Alsop DC, O’Gorman RL (2009) Quantitative comparison of methods for spatial normalisation of CASL perfusion MR images. ISMRM 17:2909

    Google Scholar 

  • Wu WC, Fernández-Seara M, Detre JA, Wehrli FW, Wang J (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NCCR on Neural Plasticity and Repair, and by the University Research Priority Program on Integrative Human Physiology. We thank Dr. John Suckling and the developer teams at Cambridge University and the Institute of Psychiatry, King’s College London (London, UK) for advice regarding the CamBA installation and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Michels.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10548_2012_265_MOESM1_ESM.tif

Supplementary Figure 1: Scatter plot showing the correlation between alpha central frequency (Top) and theta central frequency (Bottom) with perfusion. (TIFF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Gorman, R.L., Poil, SS., Brandeis, D. et al. Coupling Between Resting Cerebral Perfusion and EEG. Brain Topogr 26, 442–457 (2013). https://doi.org/10.1007/s10548-012-0265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0265-7

Keywords

Navigation