Skip to main content
Log in

Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100–200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aigner S (1952) Die Temperaturminima im Gstettnerboden bei Lunz am See, Niederösterreich [The temperature minima in the Gstettner basin near Lunz, Lower Austria]. Wetter Leb Spec Issue 1:34–37

    Google Scholar 

  • Arduini G, Staquet C, Chemel C (2016) Interactions between the nighttime valley-wind system and a developing cold-air pool. Boundary-Layer Meteorol 161:49–72

    Article  Google Scholar 

  • Billings BJ, Grubis̆ić V, Borys RD (2006) Maintenance of a mountain valley cold pool: a numerical study. Mon Weather Rev 134:2266–2278

    Article  Google Scholar 

  • Bryan GH, Fritsch JM (2002) A benchmark simulation for moist nonhydrostatic numerical models. Mon Weather Rev 130:2917–2928

    Article  Google Scholar 

  • Burns P, Chemel C (2014) Evolution of cold-air-pooling processes in complex terrain. Boundary-Layer Meteorol 150:423–447

    Article  Google Scholar 

  • Chemel C, Arduini G, Staquet C, Largeron Y, Legain D, Tzanos D, Paci A (2016) Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley. Atmos Environ 128:208–215

    Article  Google Scholar 

  • Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. Tech Memo TM-104606, NASA

  • Clements CB, Whiteman CD, Horel JD (2003) Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J Appl Meteorol 42:752–768

    Article  Google Scholar 

  • De Wekker SFJ, Whiteman CD (2006) On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J Appl Meteorol Climatol 45:813–820

    Article  Google Scholar 

  • Dorninger M, Whiteman CD, Bica B, Eisenbach S, Pospichal B, Steinacker R (2011) Meteorological events affecting cold-air pools in a small basin. J Appl Meteorol Climatol 50:2223–2234

    Article  Google Scholar 

  • Doyle JD, Epifanio CC, Persson A, Reinecke PA, Zngl G (2012) Mesoscale modeling over complex terrain: numerical and predictability perspectives. In: Chow FK, DeWekker SFJ, Snyder B (eds) Mountain weather research and forecasting. Springer, Dordrecht, pp 531–589

    Google Scholar 

  • Fast JD, Zhong S, Whiteman CD (1996) Boundary layer evolution within a canyonland basin. Part II: numerical simulations of nocturnal flows and heat budgets. J Appl Meteorol 35:2162–2178

    Article  Google Scholar 

  • Gary JM (1973) Estimate of truncation error in transformed coordinate, primitive equation atmospheric models. J Atmos Sci 30:223–233

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech Note NCAR/TN-398+STR, National Center for Atmospheric Research, 122 pp

  • Haiden T, Whiteman CD, Hoch SW, Lehner M (2011) A mass flux model of nocturnal cold-air intrusions into a closed basin. J Appl Meteorol Climatol 50:933–943

    Article  Google Scholar 

  • Ha K-J, Mahrt L (2003) Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus 55A:317–327

    Article  Google Scholar 

  • Hart KA, Steenburgh WJ, Onton DJ, Siffert AJ (2004) An evaluation of mesoscale-model-based model output statistics (MOS) during the 2002 Olympic and Paralympic Winter Games. Weather Forecast 19:200–218

    Article  Google Scholar 

  • Hoch SW, Whiteman CD, Mayer B (2011) A systematic study of longwave radiative heating and cooling within valleys and basins using a three-dimensional radiative transfer model. J Appl Meteorol Climatol 50:2473–2489

    Article  Google Scholar 

  • Kiefer MT, Zhong S (2011) An idealized modeling study of nocturnal cooling processes inside a small enclosed basin. J Geophys Res 116:D20127

    Article  Google Scholar 

  • Kiefer MT, Zhong S (2013) The effect of sidewall forest canopies on the formation of cold-air pools: a numerical study. J Geophys Res 118:5965–5978

    Article  Google Scholar 

  • Kiefer MT, Zhong S (2015) The role of forest cover and valley geometry in cold-air pool evolution. J Geophys Res Atmos 120:8693–8711

    Article  Google Scholar 

  • Lareau NP, Crosman E, Whiteman CD, Horel JD, Hoch SW, Brown WOJ, Horst TW (2013) The persistent cold-air pool study. Bull Am Meteorol Soc 94:51–63

    Article  Google Scholar 

  • Largeron Y, Staquet C (2016a) The atmospheric boundary layer during wintertime persistent inversions in the Grenoble Valleys. Front Earth Sci 4:70

    Article  Google Scholar 

  • Largeron Y, Staquet C (2016b) Persistent inversion dynamics and wintertime \(\text{ PM }_{10}\) air pollution in Alpine valleys. Atmos Environ 135:92–108

    Article  Google Scholar 

  • Louis J-F (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17:187–202

    Article  Google Scholar 

  • Malek E, Davis T, Martin RS, Silva PJ (2006) Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. Atmos Res 79:108–122

    Article  Google Scholar 

  • Mihailović DT, Janjić ZI (1986) Comparison of methods for reducing the error of the pressure gradient force in sigma coordinate models. Meteorol Atmos Phys 35:177–184

    Article  Google Scholar 

  • Pataki DE, Tyler BJ, Peterson RE, Nair AP, Steenburgh WJ, Pardyjak ER (2005) Can carbon dioxide be used as a tracer of urban atmospheric transport? J Geophys Res 110:D15102

    Article  Google Scholar 

  • Pope CA III, Muhlestein JB, May HT, Renlund DG, Anderson JL, Horne BD (2006) Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 114:2443–2448

    Article  Google Scholar 

  • Pospichal B, Eisenbach S, Whiteman CD, Steinacker R, Dorninger M (2003) Observations of the cold air outflow from a basin cold pool through a low pass. In: Proceedings of international conference on Alpine meteorology 2003

  • Price JD, Vosper S, Brown A, Ross A, Clark P, Davies F, Horlacher V, Claxton B, McGregor JR, Hoare JS, Jemmett-Smith B, Sheridan P (2011) COLPEX: field and numerical studies over a region of small hills. Bull Am Meteorol Soc 92:1636–1650

    Article  Google Scholar 

  • Reddy PJ, Barbarick DE, Osterburg RD (1995) Development of a statistical model for forecasting episodes of visibility degradation in the Denver metropolitan area. J Appl Meteorol 34:616–625

    Article  Google Scholar 

  • Reeves HD, Lin Y-L (2006) Effect of stable layer formation over the Po valley on the development of convection during MAP IOP-8. J Atmos Sci 63:2567–2584

    Article  Google Scholar 

  • Sauberer F (1946) 100 Kilometer von Wien: 51 Grad unter Null [100 kilometres from Vienna: 51 degrees below zero]. Universum 5:105–107

    Google Scholar 

  • Savijärvi H (2006) Radiative and turbulent heating rates in the clear-air boundary layer. Q J R Meteorol Soc 132:147–161

    Article  Google Scholar 

  • Schmidt W (1930) Die tiefsten Minimumtemperaturen in Mitteleuropa [The lowest minimum temperatures in central Europe]. Die Naturwissenschaften 18:367–369

    Article  Google Scholar 

  • Schmidt W (1933) Kleinklimatische Beobachtung in Österreich [Microclimatic observations in Austria]. Geogr Jahresbericht Österreich 16:53–59

    Google Scholar 

  • Schmidt W, Gams H, Kühnelt W, Furlani J, Müller H (1929) Bioklimatische Untersuchungen im Lunzer Gebiet [Bioclimatic investigations in the Lunz region]. Die Naturwissenschaften 17:176–179

    Article  Google Scholar 

  • Sheridan PF, Vosper SB, Brown AR (2014) Characteristics of cold pools observed in narrow valleys and dependence on external conditions. Q J R Meteorol Soc 140:715–728

    Article  Google Scholar 

  • Silcox GD, Kelly KE, Crosman ET, Whiteman CD, Allen BL (2012) Wintertime \(\text{ PM }_{2.5}\) concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos Environ 46:17–24

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical report of NCAR/TN-475, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, 113 pp

  • Steinacker R, Whiteman CD, Dorninger M, Pospichal B, Eisenbach S, Holzer AM, Weihs P, Mursch-Radlgruber E, Baumann K (2007) A sinkhole field experiment in the eastern Alps. Bull Am Meteorol Soc 88:701–716

    Article  Google Scholar 

  • Tao W-K, Lang S, Simpson J, Sui C-H, Ferrier B, Chou M-D (1996) Mechanism of cloud–radiation interaction in the tropics and midlatitude. J Atmos Sci 53:2624–2651

    Article  Google Scholar 

  • Vosper SB, Hughes JK, Lock AP, Sheridan PF, Ross AN, Jemmett-Smith B, Brown AR (2014) Cold-pool formation in a narrow valley. Q J R Meteorol Soc 140:699–714

    Article  Google Scholar 

  • Whiteman CD, Eisenbach S, Pospichal B, Steinacker R (2004a) Comparison of vertical soundings and sidewall air temperature measurements in a small Alpine basin. J Appl Meteorol 43:1635–1647

    Article  Google Scholar 

  • Whiteman CD, Haiden T, Pospichal B, Eisenbach S, Steinacker R (2004b) Minimum temperatures, diurnal temperature ranges and temperature inversions in limestone sinkholes of different size and shape. J Appl Meteorol 43:1224–1236

    Article  Google Scholar 

  • Whiteman CD, Pospichal B, Eisenbach S, Weihs P, Clements CB, Steinacker R, Mursch-Radlgruber E, Dorninger M (2004c) Inversion breakup in small Rocky Mountain and Alpine basins. J Appl Meteorol 43:1069–1082

    Article  Google Scholar 

  • Whiteman CD, De Wekker SFJ, Haiden T (2007) Effect of dewfall and frostfall on nighttime cooling in a small, closed basin. J Appl Meteorol Climatol 46:3–13

    Article  Google Scholar 

  • Whiteman CD, Muschinski A, Zhong S, Fritts D, Hoch SW, Hahnenberger M, Yao W, Hohreiter V, Behn M, Cheon Y, Clements CB, Horst TW, Brown WOJ, Oncley SP (2008) METCRAX 2006—meteorological experiments in Arizona’s Meteor Crater. Bull Am Meteorol Soc 89:1665–1680

    Article  Google Scholar 

  • Whiteman CD, Hoch SW, Lehner M, Haiden T (2010) Nocturnal cold air intrusions into a closed basin: observational evidence and conceptual model. J Appl Meteorol Climatol 49:1894–1905

    Article  Google Scholar 

  • Whiteman CD, Hoch SW, Horel JD, Charland A (2014) Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos Environ 94:742–753

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V (2000) The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmosphere simulation and prediction model. Part I: model dynamics and verification. Meteorol Atmos Phys 75:463–485

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster D, Carr F, Weber D, Liu Y, Wang D (2001) The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmosphere simulation and prediction tool. Part II: model physics and applications. Meteorol Atmos Phys 76:143–165

    Article  Google Scholar 

  • Zängl G (2002) An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography. Mon Weather Rev 130:1423–1432

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Science Foundation through Grant AGS-1361863. Observational data for the model evaluation have been collected during a field course of the University of Vienna. We thank the students for their enthusiasm in setting up the instruments and running them during the cold nights. Mr. Kupelwieser is thanked for providing access to the Grünloch experimental area. Finally, we are grateful for the helpful comments from three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Lehner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehner, M., Whiteman, C.D. & Dorninger, M. Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole. Boundary-Layer Meteorol 163, 497–522 (2017). https://doi.org/10.1007/s10546-017-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0232-7

Keywords

Navigation