Skip to main content
Log in

Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In the Southern Great Plains, nocturnal low-level jets (LLJs) develop frequently after sunset and play an important role in the transport and dispersion of moisture and atmospheric pollutants. However, our knowledge regarding the LLJ evolution and its feedback on the structure of the nocturnal boundary layer (NBL) is still limited. In the present study, NBL characteristics and their interdependencies with LLJ evolution are investigated using datasets collected across the Oklahoma City metropolitan area during the Joint Urban field experiment in July 2003 and from three-dimensional simulations with the Weather Research and Forecasting (WRF) model. The strength of the LLJs and turbulent mixing in the NBL both increase with the geostrophic forcing. During nights with the strongest LLJs, turbulent mixing persisted after sunset in the NBL and a strong surface temperature inversion did not develop. However, the strongest increase in LLJ speed relative to the mixed-layer wind speed in the daytime convective boundary layer (CBL) occurred when the geostrophic forcing was relatively weak and thermally-induced turbulence in the CBL was strong. Under these conditions, turbulent mixing at night was typically much weaker and a strong surface-based inversion developed. Sensitivity tests with the WRF model confirm that weakening of turbulent mixing during the decay of the CBL in the early evening transition is critical for LLJ formation. The cessation of thermally-induced CBL turbulence during the early evening transition triggers an inertial oscillation, which contributes to the LLJ formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. UTC = Central Standard Time (CST) + 6 h.

References

  • Acevedo OC, Fitzjarrald DR (2001) The early evening surface-layer transition: temporal and spatial variability. J Atmos Sci 58(17):2650–2667. doi:10.1175/1520-0469(2001)0582.0.CO;2

    Article  Google Scholar 

  • Acevedo OC, Costa FD, Degrazia GA (2012) The coupling state of an idealized stable boundary layer. Boundary-Layer Meteorol 145(1):211–228. doi:10.1007/s10546-011-9676-3

  • Allwine KJ (2004) Overview of joint urban 2003—an atmospheric dispersion study in Oklahoma City. In: Joint session between the 8th symposium on integrated observing and assimilation systems in the atmosphere, oceans and land surface and the symposium on planning, nowcasting, and forecasting in the urban zone, Seattle, WA. American Meteorological Society

  • Baas P, Bosveld FC, Baltink HK, Holtslag AAM (2009) A climatology of nocturnal low-level jets at Cabauw. J Appl Meteorol Climatol 48(8):1627–1642. doi:10.1175/2009jamc1965.1

    Article  Google Scholar 

  • Banta RM (2008) Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys 56(1):58–87. doi:10.2478/s11600-007-0049-8

    Article  Google Scholar 

  • Banta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during CASES-99. Boundary-Layer Meteorol 105(2):221–252. doi:10.1023/a:1019992330866

  • Banta RM, Pichugina YL, Newsom RK (2003) Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J Atmos Sci 60(20):2549–2555. doi:10.1175/1520-0469(2003)060(aa)2549:rbljpa(aa)2.0.co;2

    Article  Google Scholar 

  • Banta RM, Pichugina YL, Brewer WA (2006) Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J Atmos Sci 63(11):2700–2719. doi:10.1175/jas3776.1

    Article  Google Scholar 

  • Banta RM, Mahrt L, Vickers D, Sun J, Balsley BB, Pichugina YL, Williams EL (2007) The very stable boundary layer on nights with weak low-level jets. J Atmos Sci 64:3068–3090. doi:10.1175/jas4002.1

    Article  Google Scholar 

  • Banta RM, Pichugina YL, Kelley ND, Hardesty RM, Brewer WA (2013) Wind energy meteorology: insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull Am Meteorol Soc 94(6):883–902. doi:10.1175/bams-d-11-00057.1

    Article  Google Scholar 

  • Belusic D, Guttler I (2010) Can mesoscale models reproduce meandering motions? Q J R Meteorol Soc 136(648):553–565. doi:10.1002/qj.606

    Google Scholar 

  • Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38:283–290

    Google Scholar 

  • Bonin TA, Blumberg WG, Klein PM, Chilson PB (2015) Thermodynamic and kinematic characteristics of the Southern Great Plains nocturnal boundary layer under differing turbulence regimes. Boundary-Layer Meteorol. doi:10.1007/s10546-015-0072-2

  • Bonner W (1968) Climatology of low level jet. Mon Weather Rev 96(12):833–850. doi:10.1175/1520-0493(1968)096(aa)0833:COTLLJ(aa)2.0.CO;2

    Article  Google Scholar 

  • Bosveld F, Baas P, Steeneveld G, Holtslag A, Angevine W, Bazile E, de Bruijn E, Deacu D, Edwards J, Ek M, Larson V, Pleim J, Raschendorfer M, Svensson G (2014) The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: results and process understanding. Boundary-Layer Meteorol 152(2):157–187. doi:10.1007/s10546-014-9919-1

  • Chambers S, Williams AG, Zahorowski W, Griffiths A, Crawford J (2011) Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere. Tellus Ser B 63(5):843–859. doi:10.1111/j.1600-0889.2011.00565.x

    Article  Google Scholar 

  • Chen F, Kusaka H, Bornstein R, Ching J, Grimmond C, Grossman-Clarke S, Loridan T, Manning K, Martilli A, Miao S, Sailor D, Salamanca F, Taha H, Tewari M, Wang X, Wyszogrodzki A, Zhang C (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31(2):273–288. doi:10.1002/joc.2158

    Article  Google Scholar 

  • Conangla L, Cuxart J (2006) On the turbulence in the upper part of the low-level jet: an experimental and numerical study. Boundary-Layer Meteorol 118(2):379–400. doi:10.1007/s10546-005-0608-y

  • Cuxart J, Jimenez M (2007) Mixing processes in a nocturnal low-level jet: an LES study. J Atmos Sci 64(5):1666–1679. doi:10.1175/JAS3903.1

    Article  Google Scholar 

  • De Wekker SFJ, Berg LK, Allwine J, Doran JC, Shaw WJ (2004) Boundary-layer structure upwind and downwind of Oklahoma City during the Joint Urban 2003 field study. In: Paper presented at the fifth conference on urban environment, american meteorological society, Vancouver, BC, Canada

  • Delgado R, Rabenhorst S, Demoz B, Hoff RM (2014) Elastic lidar measurements of summer nocturnal low level jet events over Baltimore, Maryland. J Atmos Chem. doi:10.1007/s10874-013-9277-2

  • Deppe A, Gallus W, Takle E (2013) A WRF ensemble for improved wind speed forecasts at turbine height. Weather Forecast 28(1):212–228. doi:10.1175/WAF-D-11-00112.1

    Article  Google Scholar 

  • Draxl C, Hahmann A, Pena A, Giebel G (2014) Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy 17(1):39–55. doi:10.1002/we.1555

    Article  Google Scholar 

  • Duarte H, Leclerc M, Zhang G (2012) Assessing the shear-sheltering theory applied to low-level jets in the nocturnal stable boundary layer. Theor Appl Climatol 110(3):359–371. doi:10.1007/s00704-012-0621-2

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale 2-dimenional model. J Atmos Sci 46(20):3077–3107. doi:10.1175/1520-0469(1989)046(aa)3077:NSOCOD(aa)2.0.CO;2

    Article  Google Scholar 

  • Edwards J, Basu S, Bosveld F, Holtslag A (2014) The impact of iadiation on the GABLS3 large-eddy simulation through the night and during the morning transition. Boundary-Layer Meteorol 152(2):189–211. doi:10.1007/s10546-013-9895-x

  • Fast J, McCorcle M (1990) A 2-dimensional numerical sensitivity study of the Great-Plains low-level jet. Mon Weather Rev 118(1):151–163. doi:10.1175/1520-0493(1990)118(aa)0151:ATDNSS(aa)2.0.CO;2

    Article  Google Scholar 

  • Fernando HJS, Weil JC (2010) Whither the stable boundary layer? A shift in the research agenda. Bull Am Meteorol Soc 91(11):1475–1484. doi:10.1175/2010bams2770.1

    Article  Google Scholar 

  • Fiebrich CA, Crawford KC (2001) The impact of unique meteorological phenomena detected by the Oklahoma Mesonet and ARS Micronet on automated quality control. Bull Am Meteorol Soc 82(10):2173–2187. doi:10.1175/1520-0477(2001)0822.3.CO;2

    Article  Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Bound-Layer Meteorol 119(3):431–447. doi:10.1007/s10546-006-9048-6

    Article  Google Scholar 

  • Garcia-Menendez F, Hu Y, Odman M (2013) Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to uncertain wind fields. J Geophys Res 118(12):6493–6504. doi:10.1002/jgrd.50524

    Google Scholar 

  • Grimmond CSB, Su H-B, Offerle B, Crawford B, Scott S, Zhong S, Clements C (2004) Variability of sensible heat fluxes in a suburban area of Oklahoma City. In: Paper presented at the symposium on planning, nowcasting, and forecasting in the urban zone/eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, Seattle, WA, USA

  • Ha K, Mahrt L (2001) Simple inclusion of z-less turbulence within and above the modeled nocturnal boundary layer. Mon Weather Rev 129(8):2136–2143. doi:10.1175/1520-0493(2001)129(aa)2136:SIOZLT(aa)2.0.CO;2

    Article  Google Scholar 

  • Han Z, Ueda H, An J (2008) Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models. Atmos Environ 42(2):233–249. doi:10.1016/j.atmosenv.2007.09.053

    Article  Google Scholar 

  • Helmis C, Wang Q, Sgouros G, Wang S, Halios C (2013) Investigating the summertime low-level jet over the east coast of the USA: a case study. Boundary-Layer Meteorol 149(2):259–276. doi:10.1007/s10546-013-9841-y

  • Holton JR (1967) The diurnal boundary layer wind oscillation above sloping terrain. Tellus 19:199–205. doi:10.1111/j.2153-3490.1967.tb01473.x

    Article  Google Scholar 

  • Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernstrom M, Van de Wiel BJH (2013) Stable atmospheric boundary layers and diurnal cycles—challenges for weather and climate models. Bull Am Meteorol Soc 94(11):1691–1706. doi:10.1175/bams-d-11-00187.1

    Article  Google Scholar 

  • Hong S-Y (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q J R Meteorol Soc 136(651):1481–1496. doi:10.1002/qj.665

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120. doi:10.1175/1520-0493(2004)132(aa)0103:aratim(aa)2.0.co;2

    Article  Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341. doi:10.1175/mwr3199.1

    Article  Google Scholar 

  • Hu X-M, Doughty DC, Sanchez KJ, Joseph E, Fuentes JD (2012) Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model. Atmos Environ 46:354–364. doi:10.1016/j.atmosenv.2011.09.054

    Article  Google Scholar 

  • Hu X-M, Klein PM, Xue M (2013a) Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J Geophys Res 118(18):10490–10505. doi:10.1002/jgrd.50823

  • Hu X-M, Klein PM, Xue M, Lundquist JK, Zhang F, Qi Y (2013b) Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J Appl Meteorol Climatol 52(8):1779–1802. doi:10.1175/jamc-d-12-0256.1

    Article  Google Scholar 

  • Hu X-M, Klein PM, Xue M, Shapiro A, Nallapareddy A (2013c) Enhanced vertical mixing associated with a nocturnal cold front passage and its impact on near-surface temperature and ozone concentration. J Geophys Res 118(7):2714–2728. doi:10.1002/jgrd.50309

    Article  Google Scholar 

  • Hu X-M, Klein PM, Xue M, Zhang F, Doughty DC, Forkel R, Joseph E, Fuentes JD (2013d) Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos Environ 70:123–130. doi:10.1016/j.atmosenv.2012.12.046

    Article  Google Scholar 

  • Jiang X, Lau N-C, Held IM, Ploshay JJ (2007) Mechanisms of the great plains low-level jet as simulated in an AGCM. J Atmos Sci 64(2):532–547. doi:10.1175/jas3847.1

    Article  Google Scholar 

  • Kallistratova M, Kouznetsov R, Kuznetsov D, Kuznetsova I, Nakhaev M, Chirokova G (2009) Summertime low-level jet characteristics measured by sodars over rural and urban areas. Meteorol Z 18(3):289–295. doi:10.1127/0941-2948/2009/0380

    Article  Google Scholar 

  • Karipot A, Leclerc MY, Zhang G, Lewin KF, Nagy J, Hendrey GR, Starr G (2008) Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy. J Geophys Res. doi:10.1029/2007jd009149

  • Klein P, Bonin TA, Newman JF, Turner DD, Chilson PB, Wainwright CE, Blumberg WG, Mishra S, Carney M, Jacobsen EP, Wharton S, Newsom RK (2015) LABLE: a multi-institutional, student-led, atmospheric boundary-layer experiment. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00267.1

  • Klein PM, Hu X-M, Xue M (2014) Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Boundary-Layer Meteorol 150(1):107–130. doi:10.1007/s10546-013-9864-4

  • Kutsher J, Haikin N, Sharon A, Heifetz E (2012) On the formation of an elevated nocturnal inversion layer in the presence of a low-level jet: a case study. Boundary-Layer Meteorol 144(3):441–449. doi:10.1007/s10546-012-9720-y

  • Lareau N, Crosman E, Whiteman C, Horel J, Hoch S, Brown W, Horst T (2013) The persistent cold-air pool study. Bull Am Meteorol Soc 94(1):51–63. doi:10.1175/BAMS-D-11-00255.1

    Article  Google Scholar 

  • Lemonsu A, Belair S, Mailhot J (2009) The new Canadian urban modelling system: Evaluation for two cases from the Joint Urban 2003 Oklahoma City Experiment. Boundary-Layer Meteorol 133(1):47–70. doi:10.1007/s10546-009-9414-2

  • Liu Y, Chen F, Warner T, Basara J (2006) Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J Appl Meteorol Climatol 45(7):912–929. doi:10.1175/JAM2383.1

    Article  Google Scholar 

  • Lundquist J (2003) Intermittent and elliptical inertial oscillations in the atmospheric boundary layer. J Atmos Sci 60(21):2661–2673. doi:10.1175/1520-0469(2003)060(aa)2661:IAEIOI(aa)2.0.CO;2

    Article  Google Scholar 

  • Lundquist J, Mirocha J (2008) Interaction of nocturnal low-level jets with urban geometries as seen in joint urban 2003 data. J Appl Meteorol Climatol 47(1):44–58. doi:10.1175/2007JAMC1581.1

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90(3):375–396. doi:10.1023/a:1001765727956

  • Mahrt L (2007) Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech 7(4):331–347. doi:10.1007/s10652-007-9024-9

    Article  Google Scholar 

  • Mahrt L (2009) Characteristics of submeso winds in the stable boundary layer. Boundary-Layer Meteorol 130(1):1–14. doi:10.1007/s10546-008-9336-4

  • Mahrt L (2010) Variability and maintenance of turbulence in the very stable boundary Layer. Boundary-Layer Meteorol 135(1):1–18. doi:10.1007/s10546-009-9463-6

  • Mahrt L (2011) Surface wind direction variability. J Appl Meteorol Climatol 50(1):144–152. doi:10.1175/2010jamc2560.1

    Article  Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46(46):23–45. doi:10.1146/annurev-fluid-010313-141354

    Article  Google Scholar 

  • Mahrt L, Vickers D (2002) Contrasting vertical structures of nocturnal boundary layers. Boundary-Layer Meteorol 105(2):351–363. doi:10.1023/a:1019964720989

  • Mahrt L, Vickers D, Andreas EL (2014) Low-level wind maxima and structure of the stably stratified boundary layer in the coastal zone. J Appl Meteorol Climatol 53(2):363–376. doi:10.1175/jamc-d-13-0170.1

    Article  Google Scholar 

  • McPherson RA, Fiebrich CA, Crawford KC, Elliott RL, Kilby JR, Grimsley DL, Martinez JE, Basara JB, Illston BG, Morris DA, Kloesel KA, Stadler SJ, Melvin AD, Sutherland AJ, Shrivastava H, Carlson JD, Wolfinbarger JM, Bostic JP, Demko DB (2007) Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet. J Atmos Ocean Technol 24(3):301–321. doi:10.1175/jtech1976.1

    Article  Google Scholar 

  • Miao JF, Chen D, Wyser K, Borne K, Lindgren J, Strandevall MKS, Thorsson S, Achberger C, Almkvist E (2008) Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations. Meteorol Atmos Phys 99(1–2):77–103. doi:10.1007/s00703-007-0267-2

    Article  Google Scholar 

  • Mitchell MJ, Arritt RW, Labas K (1995) A climatology of the warm-season Great-Plains low-level jet using wind profiler observations. Weather Forecast 10(3):576–591. doi:10.1175/1520-0434(1995)010(aa)0576:acotws(aa)2.0.co;2

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682. doi:10.1029/97jd00237

    Article  Google Scholar 

  • Ngan F, Kim H, Lee P, Al-Wali K, Dornblaser B (2013) A Study of nocturnal surface wind speed overprediction by the WRF-ARW Model in southeastern Texas. J Appl Meteorol Climatol 52(12):2638–2653. doi:10.1175/JAMC-D-13-060.1

    Article  Google Scholar 

  • Nielsen-Gammon J, Hu X, Zhang F, Pleim J (2010) Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon Weather Rev 138(9):3400–3417. doi:10.1175/2010MWR3292.1

    Article  Google Scholar 

  • Ohya Y, Nakamura R, Uchida T (2008) Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Bound-Layer Meteorol 126(3):349–363. doi:10.1007/s10546-007-9245-y

    Article  Google Scholar 

  • Pan Z, Segal M, Arritt R (2004) Role of topography in forcing low-level jets in the Central United States during the 1993 flood-altered terrain simulations. Mon Weather Rev 132(1):396–403. doi:10.1175/1520-0493(2004)132(aa)0396:ROTIFL(aa)2.0.CO;2

    Article  Google Scholar 

  • Parish T, Oolman L (2010) On the role of sloping terrain in the forcing of the Great Plains low-level jet. J Atmos Sci 67(8):2690–2699. doi:10.1175/2010JAS3368.1

    Article  Google Scholar 

  • Pichugina Y, Banta R (2010) Stable boundary layer depth from high-resolution measurements of the mean wind profile. J Appl Meteorol Climatol 49(1):20–35. doi:10.1175/2009JAMC2168.1

    Article  Google Scholar 

  • Pu B, Dickinson R (2014) Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J Atmos Sci 71(5):1807–1817. doi:10.1175/JAS-D-13-0243.1

    Article  Google Scholar 

  • Sandu I, Beljaars A, Bechtold P, Mauritsen T, Balsamo G (2013) Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J Adv Model Earth Syst 5(2):117–133. doi:10.1002/jame.20013

    Article  Google Scholar 

  • Schroter J, Moene A, Holtslag A (2013) Convective boundary layer wind dynamics and inertial oscillations: the influence of surface stress. Q J R Meteorol Soc 139(676):1694–1711. doi:10.1002/qj.2069

    Article  Google Scholar 

  • Shapiro A, Fedorovich E (2009) Nocturnal low-level jet over a shallow slope. Acta Geophys 57(4):950–980. doi:10.2478/s11600-009-0026-5

    Google Scholar 

  • Shapiro A, Fedorovich E (2010) Analytical description of a nocturnal low-level jet. Q J R Meteorol Soc 136(650):1255–1262. doi:10.1002/qj.628

    Google Scholar 

  • Shibuya R, Sato K, Nakanishi M (2014) Diurnal wind cycles forcing inertial oscillations: a latitude-dependent resonance phenomenon. J Atmos Sci 71(2):767–781. doi:10.1175/jas-d-13-0124.1

    Article  Google Scholar 

  • Shimada S, Ohsawa T (2011) Accuracy and characteristics of offshore wind speeds simulated by WRF. Sola 7:21–24. doi:10.2151/sola.2011-006

    Article  Google Scholar 

  • Shin H, Hong S (2011) Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol 139(2):261–281. doi:10.1007/s10546-010-9583-z

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A Description of the advanced research WRF Version 3. NCAR Technical Note. National Center for Atmospheric Research Boulder, CO, USA

  • Smedman A, Bergstrom H, Hogstrom U (1995) Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Boundary-Layer Meteorol 76(3):211–232. doi:10.1007/BF00709352

  • Smedman A, Bergstrom H, Grisogono B (1997) Evolution of stable internal boundary layers over a cold sea. J Geophys Res 102(C1):1091–1099. doi:10.1029/96JC02782

    Article  Google Scholar 

  • Song J, Liao K, Coulter R, Lesht B (2005) Climatology of the low-level jet at the southern Great Plains atmospheric boundary layer experiments site. J Appl Meteorol 44(10):1593–1606. doi:10.1175/JAM2294.1

    Article  Google Scholar 

  • Stensrud D (1996) Importance of low-level jets to climate: a review. J Clim 9(8):1698–1711. doi:10.1175/1520-0442(1996)009(aa)1698:IOLLJT(aa)2.0.CO;2

    Article  Google Scholar 

  • Storm B, Dudhia J, Basu S, Swift A, Giammanco I (2009) Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: implications for wind energy. Wind Energy 12(1):81–90. doi:10.1002/we.288

    Article  Google Scholar 

  • Sun J, Mahrt L, Banta R, Pichugina Y (2012) Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J Atmos Sci 69(1):338–351. doi:10.1175/JAS-D-11-082.1

    Article  Google Scholar 

  • Van de Wiel B, Moene A, Steeneveld G, Baas P, Bosveld F, Holtslag A (2010) A conceptual view on inertial oscillations and nocturnal low-level jets. J Atmos Sci 67(8):2679–2689. doi:10.1175/2010JAS3289.1

    Article  Google Scholar 

  • Van de Wiel B, Moene A, Jonker H (2012a) The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J Atmos Sci 69(11):3097–3115. doi:10.1175/JAS-D-12-064.1

    Article  Google Scholar 

  • Van de Wiel B, Moene A, Jonker H, Baas P, Basu S, Donda J, Sun J, Holtslag A (2012b) The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J Atmos Sci 69(11):3116–3127. doi:10.1175/JAS-D-12-0107.1

    Article  Google Scholar 

  • Vautard R, Moran M, Solazzo E, Gilliam R, Matthias V, Bianconi R, Chemel C, Ferreira J, Geyer B, Hansen A, Jericevic A, Prank M, Segers A, Silver J, Werhahn J, Wolke R, Rao S, Galmarini S (2012) Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations. Atmos Environ 53:15–37. doi:10.1016/j.atmosenv.2011.10.065

    Article  Google Scholar 

  • Wang C, Jin S (2014) Error features and their possible causes in simulated low-level winds by WRF at a wind farm. Wind Energy 17(9):1315–1325. doi:10.1002/we.1635

    Google Scholar 

  • Wang Y, Klipp CL, Garvey DM, Ligon DA, Williamson CC, Chang SS, Newsom RK, Calhoun R (2007) Nocturnal low-level-jet-dominated atmospheric boundary layer observed by a Doppler lidar over Oklahoma City during JU2003. J Appl Meteorol Climatol 46(12):2098–2109. doi:10.1175/2006jamc1283.1

    Article  Google Scholar 

  • Wei W, Wu B, Ye X, Wang H, Zhang H (2013) Characteristics and mechanisms of low-level jets in the Yangtze River delta of China. Boundary-Layer Meteorol 149(3):403–424. doi:10.1007/s10546-013-9852-8

  • Wei W, Zhang H, Ye X (2014) Comparison of low-level jets along the north coast of China in summer. J Geophys Res 119(16):9692–9706. doi:10.1002/2014JD021476

    Google Scholar 

  • Werth D, Kurzeja R, Dias N, Zhang G, Duarte H, Fischer M, Parker M, Leclerc M (2011) The simulation of the Southern Great Plains nocturnal boundary layer and the low-level jet with a high-resolution mesoscale atmospheric model. J Appl Meteorol Climatol 50(7):1497–1513. doi:10.1175/2011JAMC2272.1

    Article  Google Scholar 

  • Wexler H (1961) A boundary layer interpretation of the low-level jet. Tellus 13(3):368–378

    Article  Google Scholar 

  • Williams A, Chambers S, Griffiths A (2013) Bulk mixing and decoupling of the nocturnal stable boundary layer characterized using a ubiquitous natural tracer. Boundary-Layer Meteorol 149(3):381–402. doi:10.1007/s10546-013-9849-3

  • Zhang D, Zheng W (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J Appl Meteorol 43(1):157–169. doi:10.1175/1520-0450(2004)043(aa)0157:DCOSWA(aa)2.0.CO;2

    Article  Google Scholar 

  • Zhang D, Zhang S, Weaver S (2006) Low-level jets over the Mid-Atlantic states: warm-season climatology and a case study. J Appl Meteorol Climatol 45(1):194–209. doi:10.1175/JAM2313.1

    Article  Google Scholar 

  • Zhang H, Pu Z, Zhang X (2013) Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Weather Forecast 28(3):893–914. doi:10.1175/WAF-D-12-00109.1

    Article  Google Scholar 

  • Zhong S, Fast J, Bian X (1996) A case study of the great plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon Weather Rev 124(5):785–806. doi:10.1175/1520-0493(1996)124(aa)0785:ACSOTG(aa)2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Office of the Vice President for Research at the University of Oklahoma. The first author was also supported through the NSF Career award ILREUM (NSF ATM 0547882) and NSF grant AGS-1359698. The fourth author was also supported by NSF grants OCI-0905040, AGS-0802888, AGS-0750790, AGS-0941491, AGS-1046171, and AGS-1046081. WRF model simulations were performed at the Texas Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra M. Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, P.M., Hu, XM., Shapiro, A. et al. Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma. Boundary-Layer Meteorol 158, 383–408 (2016). https://doi.org/10.1007/s10546-015-0097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0097-6

Keywords

Navigation