Skip to main content
Log in

Altered mTOR signalling in nephropathic cystinosis

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Lysosomes play a central role in regulating autophagy via activation of mammalian target of rapamycin complex 1 (mTORC1). We examined mTORC1 signalling in the lysosomal storage disease nephropathic cystinosis (MIM 219800), in which accumulation of autophagy markers has been previously demonstrated. Cystinosis is caused by mutations in the lysosomal cystine transporter cystinosin and initially affects kidney proximal tubules causing renal Fanconi syndrome, followed by a gradual development of end-stage renal disease and extrarenal complications. Using proximal tubular kidney cells obtained from healthy donors and from cystinotic patients, we demonstrate that cystinosin deficiency is associated with a perturbed mTORC1 signalling, delayed reactivation of mTORC1 after starvation and abnormal lysosomal retention of mTOR during starvation. These effects could not be reversed by treatment with cystine-depleting drug cysteamine. Altered mTORC1 signalling can contribute to the development of proximal tubular dysfunction in cystinosis and points to new possibilities in therapeutic intervention through modulation of mTORC-dependent signalling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrzewska Z, Nevo N, Thomas L (2015) Cystinosin is a component of the vacuolar H+−ATPase-Ragulator-Rag complex controlling mammalian target of rapamycin complex 1 signaling. J Am Soc Nephrol

  • de Graaf-Hess A, Trijbels F, Blom H (1999) New method for determining cystine in leukocytes and fibroblasts. Clin Chem 45:2224–2228

    PubMed  Google Scholar 

  • De Rechter S, Decuypere JP, Ivanova E et al (2015) Autophagy in renal diseases. Pediatr Nephrol

  • Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18:524–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freed KA, Blangero J, Howard T et al (2011) The 57 kb deletion in cystinosis patients extends into TRPV1 causing dysregulation of transcription in peripheral blood mononuclear cells. J Med Genet 48:563–566

    Article  CAS  PubMed  Google Scholar 

  • Gahl WA, Thoene JG, Schneider JA (2002) Cystinosis. New Engl J Med 347:111–121

    Article  PubMed  Google Scholar 

  • Gaide Chevronnay HP, Janssens V, Van Der Smissen P et al (2014) Time course of pathogenic and adaptation mechanisms in cystinotic mouse kidneys. J Am Soc Nephrol 25:1256–1269

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao M, Kaiser CA (2006) A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 8:657–667

    Article  CAS  PubMed  Google Scholar 

  • Grahammer F, Haenisch N, Steinhardt F et al (2014) mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc Natl Acad Sci U S A 111:E2817–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewoud MJ, Zwartkruis FJ (2013) Rheb and Rags come together at the lysosome to activate mTORC1. Biochem Soc Trans 41:951–955

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EA, De Leo MG, Santoro M, Van den Heuvel LP, De Matteis MA, Levtchenko EN (2013) Cystinotic proximal tubular epithelial cells demonstrate impaired endocytosis and altered endocytic compartments. Abstract from the International Pediatric Nephrology Association. Pediatr Nephrol 28:1625

    Google Scholar 

  • Kogan K, Spear ED, Kaiser CA, Fass D (2010) Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. J Mol Biol 402:388–392

    Article  CAS  PubMed  Google Scholar 

  • Korolchuk VI, Saiki S, Lichtenberg M et al (2011) Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 13:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levtchenko E, Monnens L (2006) Development of Fanconi syndrome during infancy in a patient with cystinosis. Acta Paediatr 95:379–380

    Article  PubMed  Google Scholar 

  • Li M, Khambu B, Zhang H et al (2013) Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J Biol Chem 288:35769–35780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A (2012) Autophagy in lysosomal storage disorders. Autophagy 8:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Parent CA (2011) Review series: TOR kinase complexes and cell migration. J Cell Biol 194:815–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naito T, Kuma A, Mizushima N (2013) Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. J Biol Chem 288:21074–21081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsaki Y, Suzuki M, Shinohara Y, Fujimoto T (2010) Lysosomal accumulation of mTOR is enhanced by rapamycin. Histochem Cell Biol 134:537–544

    Article  CAS  PubMed  Google Scholar 

  • Okamura DM, Bahrami NM, Ren S et al (2014) Cysteamine modulates oxidative stress and blocks myofibroblast activity in CKD. J Am Soc Nephrol 25:43–54

    Article  CAS  PubMed  Google Scholar 

  • Park M, Helip-Wooley A, Thoene J (2002) Lysosomal cystine storage augments apoptosis in cultured human fibroblasts and renal tubular epithelial cells. J Am Soc Nephrol 13:2878–2887

    Article  CAS  PubMed  Google Scholar 

  • Peruchetti DB, Cheng J, Caruso-Neves C, Guggino WB (2014) Mis-regulation of mammalian target of rapamycin (mTOR) complexes induced by albuminuria in proximal tubules. J Biol Chem 289:16790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt FM, Boland B, van der Spoel AC (2012) The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199:723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebsamen M, Pochini L, Stasyk T et al (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancak Y, Sabatini DM (2009) Rag proteins regulate amino-acid-induced mTORC1 signalling. Biochem Soc Trans 37:289–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansanwal P, Sarwal MM (2012) p62/SQSTM1 prominently accumulates in renal proximal tubules in nephropathic cystinosis. Pediatr Nephrol 27:2137–2144

    Article  PubMed  Google Scholar 

  • Sansanwal P, Yen B, Gahl WA et al (2010) Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J Am Soc Nephrol 21:272–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taub M, Cutuli F (2012) Activation of AMP kinase plays a role in the increased apoptosis in the renal proximal tubule in cystinosis. Biochem Biophys Res Commun 426:516–521

    Article  CAS  PubMed  Google Scholar 

  • Vitiello SP, Pierce DA (2010) Alterations in the vacuolar (H+)-ATPase in the yeast model of cystinosis, Abstract from the Second International Cystinosis Research Symposium. Pediatr Nephrol 25:2205–2206

    Google Scholar 

  • Wessels H, Vogel R, Lightowlers R et al (2013) Analysis of 953 human proteins from a mitochondrial HEK293 fraction by complexome profiling. PLoS ONE 8:e68340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmer MJ, de Graaf-Hess A, Blom HJ et al (2005) Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells. Biochem Biophys Res Commun 337:610–614

    Article  CAS  PubMed  Google Scholar 

  • Wilmer MJ, Emma F, Levtchenko EN (2010a) The pathogenesis of cystinosis: mechanisms beyond cystine accumulation. Am J Physiol Renal Physiol 299:F905–916

    Article  CAS  PubMed  Google Scholar 

  • Wilmer MJ, Saleem MA, Masereeuw R et al (2010b) Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res 339:449–457

    Article  PubMed  Google Scholar 

  • Xu J, Ji J, Yan XH (2012) Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci Nutr 52:373–381

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Lamb RF (2012) Amino acid sensing and regulation of mTORC1. Semin Cell Dev Biol 23:621–625

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Tan SH, Nicolas V et al (2013) Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res 23:508–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Cystinosis Research Foundation. The authors would like to thank Cell Imaging Core at KU Leuven for providing the equipment for microscopy studies. Elena N. Levtchenko is supported by the Research Foundation - Flanders (FWO Vlaanderen), grant 1801110 N.

Authors’ contribution

All authors were involved in the conception, design, and performance, or analysis and interpretation of data. EAI drafted the manuscript, and all authors critically revised it for intellectual content and agreed to its submission to JIMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Levtchenko.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest concerning the publication of this manuscript.

Funding

This work was sponsored by the Cystinosis Research Foundation. Elena N. Levtchenko is supported by the Research Foundation - Flanders (FWO Vlaanderen), grant 1801110 N. The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Details of ethics approval

The current study is in accordance with the institutional ethical guidelines for obtaining human cell lines for research and was approved by the corresponding ethical committee at University Hospitals Leuven.

Additional information

Communicated by: Eva Morava

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Effect of cyteamine treatment on cystine concentrations and viability of ciPTEC cells. A) Cystine measurements (nmol/mg protein) in the studied cystinotic ciPTEC cell lines without and with the addition of 100 μM of cysteamine for 24 h. B) Cell viability of cysteamine treated ciPTEC cystinotic and control cell lines expressed as percentage of average absorbance of the corresponding cell lines without cysteamine traetment. (TIF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.A., van den Heuvel, L.P., Elmonem, M.A. et al. Altered mTOR signalling in nephropathic cystinosis. J Inherit Metab Dis 39, 457–464 (2016). https://doi.org/10.1007/s10545-016-9919-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-016-9919-z

Navigation