Skip to main content
Log in

X-linked creatine transporter defect: A report on two unrelated boys with a severe clinical phenotype

  • Short Report
  • Published:
Journal of Inherited Metabolic Disease

An Erratum to this article was published on 12 October 2006

Summary

We report two unrelated boys with the X-linked creatine transporter defect (CRTR) and clinical features more severe than those previously described with this disorder. These two boys presented at ages 12 and 30 months with severe mental retardation, absent speech development, hypotonia, myopathy and extra-pyramidal movement disorder. One boy has seizures and some dysmorphic features; he also has evidence of an oxidative phosphorylation defect. They both had classical absence of creatine peak on brain magnetic resonance spectroscopy (MRS). In one, however, this critical finding was overlooked in the initial interpretation and was discovered upon subsequent review of the MRS. Molecular studies showed large genomic deletions of a large part of the 3′ end of the complete open reading frame of the SLC6A8 gene. This report emphasizes the importance of MRS in evaluating neurological symptoms, broadens the phenotypic spectrum of CRTR and adds knowledge about the pathogenesis of creatine depletion in the brain and retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bizzi A, Bugiani M, Salomons GS, et al (2002) X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol 52: 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Brustovetsky N, Brustovetsky T, Dubinsky JM (2001) On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 76: 425–434.

    Article  CAS  PubMed  Google Scholar 

  • Cooper LL, Hansen RM, Darras BT, et al (2002) Rod photoreceptor function in children with mitochondrial disorders. Arch Ophthalmol 120: 1055–1062.

    PubMed  Google Scholar 

  • Corzo D, Gibson W, Johnson K, et al (2002) Contiguous deletion of the X-linked adrenoleukodystrophy gene (ABCD1) and DXS1357E: a novel neonatal phenotype similar to peroxisomal biogenesis disorders. Am J Hum Genet 70: 1520–1531.

    Article  CAS  PubMed  Google Scholar 

  • Das AM, Ullrich K, Isbrandt D (2000) Upregulation of respiratory chain enzymes in guanidinoacetate methyltransferase deficiency. J Inherit Metab Dis 23: 375–377.

    Article  CAS  PubMed  Google Scholar 

  • deGrauw TJ, Salomons GS, Cecil KM, et al (2002) Congenital creatine transporter deficiency. Neuropediatrics 33: 232–238.

    Article  CAS  PubMed  Google Scholar 

  • deGrauw TJ, Cecil KM, Byars AW, Salomons GS, Ball WS, Jakobs C (2003) The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 244: 45–48.

    CAS  PubMed  Google Scholar 

  • Fulton AB, Hansen RM (2000) The development of scotopic sensitivity. Invest Ophthalmol Vis Sci41: 1588–1596.

    CAS  PubMed  Google Scholar 

  • Fulton AB, Hansen RM, Westall CA (2003) Development of ERG responses: the ISCEV rod, maximal and cone responses in normal subjects. Doc Ophthalmol 107: 235–241.

    Article  PubMed  Google Scholar 

  • Hahn KA, Salomons GS, Tackels-Horne D, et al (2002) X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am J Hum Genet 70: 1349–1356.

    Article  CAS  PubMed  Google Scholar 

  • Hansen RM, Fulton AB (2005) Development of the cone ERG in infants. Invest Ophthalmol Vis Sci 46: 3458–3462.

    PubMed  Google Scholar 

  • Item CB, Stockler-Ipsiroglu S, Stromberger C, et al (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69: 1127–1133.

    Article  CAS  PubMed  Google Scholar 

  • Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76: 8–32.

    Article  CAS  PubMed  Google Scholar 

  • Leuzzi V (2002) Inborn errors of creatine metabolism and epilepsy: clinical features, diagnosis, and treatment. J Child Neurol 17 (supplement 3): 3S89–97.

    PubMed  Google Scholar 

  • Mancini GM, Catsman-Berrevoets CE, de Coo IF, et al (2005) Two novel mutations in SLC6A8 cause creatine transporter defect and distinctive X-linked mental retardation in two unrelated Dutch families. Am J Med Genet A 132: 288–295.

    CAS  PubMed  Google Scholar 

  • O’Gorman E, Beutner G, Wallimann T, Brdiczka D (1996) Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. Biochim Biophys Acta 1276: 161–170.

    PubMed  Google Scholar 

  • O’Gorman E, Fuchs KH, Tittmann P, Gross H, Wallimann T (1997) Crystalline mitochondrial inclusion bodies isolated from creatine depleted rat soleus muscle. J Cell Sci 110(12): 1403–1411.

    CAS  PubMed  Google Scholar 

  • Rosenberg EH, Almeida LS, Kleefstra T, et al (2004) High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 75: 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Salomons GS, van Dooren SJ, Verhoeven NM, Cecil KM, Ball WS, Degrauw TJ, Jakobs C (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68: 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  • Salomons GS, van Dooren SJ, Verhoeven NM, et al (2003) X-linked creatine transporter defect: an overview. J Inherit Metab Dis 26: 309–318.

    Article  CAS  PubMed  Google Scholar 

  • Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244: 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Stockler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K (1996) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58: 914–922.

    CAS  PubMed  Google Scholar 

  • Stromberger C, Bodamer OA, Stockler-Ipsiroglu S (2003) Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 26: 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Roy BD, MacDonald JR (1997) A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 20: 1502–1509.

    Article  CAS  PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80: 1107–1213.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Marsden.

Additional information

First and second author contributed equally to this paper

Communicating editor: Michael Gibson

Competing interests: None declared

An erratum to this article is available at http://dx.doi.org/10.1007/s10545-006-9997-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselm, I.M., Alkuraya, F.S., Salomons, G.S. et al. X-linked creatine transporter defect: A report on two unrelated boys with a severe clinical phenotype. J Inherit Metab Dis 29, 214–219 (2006). https://doi.org/10.1007/s10545-006-0123-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0123-4

Keywords

Navigation