Skip to main content

Advertisement

Log in

Intracortical polyimide electrodes with a bioresorbable coating

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Polyimide based shaft electrodes were coated with a bioresorbable layer to stiffen them for intracortical insertion and to reduce the mechanical mismatch between the target tissue and the implanted device after degradation of the coating. Molten saccharose was used as coating material. In a proof-of-concept study, the electrodes were implanted into the cortex of Wistar rats and the insertion forces during implantation were recorded. Electrochemical impedance spectroscopy was performed immediately after implantation and up to 13 weeks after implantation to monitor the tissue response to the implanted electrodes. The recorded spectra were modeled with an equivalent circuit to differentiate the influence of the single components. In one rat, a peak in the encapsulation resistance was observable after two weeks of implantation, indicating the peak of the acute inflammatory response. In another rat, the lowest resistances were observed after four weeks, indicating the termination of the acute inflammatory response. Multiunit activity was recorded with an adequate signal to noise ratio to allow spike sorting. Histology was performed after 7, 45 and 201 days of implantation. The results showed the highest tissue reaction after 45 days and confirmed impedance data that acute inflammatory reactions terminate over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • M. Asplund, C. Boehler, T. Stieglitz, Front Neuroeng 7 (2014)

  • P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, R. A. Normann, IEEE Trans Biomed Eng 38, 8 (1991)

    Article  Google Scholar 

  • X. Cui, D.C. Martin, Sensor Actuat B-Chem, 89 (2003a)

  • X. Cui, D.C. Martin, Sensor Actuat A-Phys, 103 (2003b)

  • X. T. Cui, D. D. Zhou, IEEE Trans Neural Syst Rehabil Eng 15, 4 (2007)

    Article  Google Scholar 

  • X. Cui, J. Hetke, J. A. Wiler, D. J. Anderson, D. C. Martin, Sensor Actuat A-Phys 93 (2001a)

  • X. Cui, A. L. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson, J Biomed Mater Res 56 (2001b)

  • X. Cui, J. Wiler, M. Dzaman, R. A. Altschuler, D. C. Martin, Biomaterials 24 (2003)

  • M. DiLuca, J. Olesen, Neuron 82, 6 (2014)

    Article  Google Scholar 

  • J. P. Donoghue, Nat Neurosci 5 (2002)

  • D. J. Edell, V. V. Toi, V. M. McNeil, L. D. Clark, IEEE Trans Biomed Eng 39, 6 (1992)

    Article  Google Scholar 

  • W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, IEEE Trans Biomed Eng 52, 7 (2005)

    Article  Google Scholar 

  • C. Hassler, J. Guy, M. Nietzschmann, J.F. Staiger, T. Stieglitz (2011) doi 10.1109/IEMBS. 2011.6090143

  • C. Henle, M. Raab, J. G. Cordeiro, S. Doostkam, A. Schulze-Bonhage, T. Stieglitz, J. Rickert, Biomed. Microdevices 13, 1 (2011)

    Article  Google Scholar 

  • L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D. Penn, J. P. Donoghue, Nature 442, 7099 (2006)

    Article  Google Scholar 

  • N. Haj Hosseini, R. Hoffmann, S. Kisban, T. Stieglitz, O. Paul, P. Ruther, The 29th Ann. Int. Conf. IEEE EMBS (2007)

  • W. Jensen, K. Yoshida, U. G. Hofmann, IEEE Trans Biomed Eng 53, 5 (2006)

    Article  Google Scholar 

  • D. H. Kim, M. R. Abidan, D. C. Martin, J Biomed Mater Res-A 71 (2004)

  • P. M. Klinge, M. A. Vafa, T. Brinker, T. Brandis, G. F. Walter, T. Stieglitz, M. Samii, K. Wewetzer, Biomaterials 22, 17 (2001)

    Google Scholar 

  • J.G. Korvink, A. Greiner, Semiconductors for micro-and nanotechnology Wiley-VCH, Weinheim, 2002

  • G.T.A. Kovacs, in Enabling Technologies for Cultured Neural Networks, ed. by D. Stenger, T. McKenna (Academic Press, Inc, San Diego, California, p. 121 (1994)

  • T. D. Y. Kozai, D. R. Kipke, J Neurosci Meth 184, 2 (2009)

    Article  Google Scholar 

  • E. Lassner, W.-D. Schubert, Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds Kuwer academic / plenum Publishers, New York, (1999)

  • K. A. Ludwig, J. D. Uram, J. Yang, D. C. Martin, D. R. Kipke, J Neural Eng 3, 1 (2006)

    Article  Google Scholar 

  • E. M. Maynard, C. T. Nordhausen, R. A. Normann, Electroen Clin. Neuro 102, 3 (1997)

    Google Scholar 

  • E. T. McAdams, J. Jossinet, Physiol Meas 16(Suppl A), 3 (1995)

    Google Scholar 

  • P. J. McCracken, A. Manduca, J. Felmlee, R. L. Ehman, Magn. Reson. Med. 53, 3 (2005)

    Article  Google Scholar 

  • A. Mercanzini, P. Colin, J.-C. Bensadoun, A. Bertsch, P. Renaud, IEEE Trans Biomed Eng 56, 7 (2009)

    Article  Google Scholar 

  • K. Najafi, K. D. Wise, IEEE J Solid-State Circuits 21, 6 (1986)

    Article  Google Scholar 

  • M. Nietzschmann, Implantation procedure for highly flexible neural probes of adjustable stiffness. Doctoral dissertation, University of Freiburg (2015)

  • V. S. Polikov, P. A. Tresco, W. M. Reichert, J Neurosci Meth 148, 1 (2005)

    Article  Google Scholar 

  • V. S. Polikov, M. L. Block, J. M. Fellous, J. S. Hong, W. M. Reichert, Biomaterials 27 (2006)

  • K. A. Potter, A. C. Buck, W. K. Self, J. R. Capadona, J Neural Eng 9, 4 (2012)

    Article  Google Scholar 

  • A. Raz, S. M. Grady, B. M. Krause, D. J. Uhlrich, K. A. Manning, M. I. Banks, Front Syst Neurosci 8 (2014)

  • P. J. Rousche, R. A. Normann, J Neurosci Meth 82 (1998)

  • B. Rubehn, T. Stieglitz, Biomaterials 31, 13 (2010)

    Article  Google Scholar 

  • B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, J Neural Eng 6, 3 (2009)

    Article  Google Scholar 

  • V. Sankar, E. Patrick, R. Dieme, J. C. Sanchez, A. Prasad, T. Nishida, Front Neuroeng 7 (2014)

  • K. Seidl, M. Schwaerzle, I. Ulbert, H. P. Neves, O. Paul, P. Ruther, J Micromech S 21, 6 (2012)

    Google Scholar 

  • T. Stieglitz, B. Rubehn, C. Henle, S. Kisban, S. Herwik, P. Ruther, M. Schuettler, Prog Brain Res 175 (2009)

  • J. Subbaroyan, D. C. Martin, D. R. Kipke, J Neural Eng 2, 4 (2005)

    Article  Google Scholar 

  • D. H. Szwarowski, M. D. Anderson, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Tuner, W. Shain, Brain Res. 983, 1–2 (2003)

    Article  Google Scholar 

  • S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, T. Suzuki, Lab Chip 5, 5 (2005)

    Article  Google Scholar 

  • J. N. Turner, W. G. Shain, D. H. Szarowski, M. D. Andersen, S. Martins, M. S. Isaacson, H. G. Craighead, Exp Neurol 156 (1999)

  • R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker, D. R. Kipke, IEEE Trans Biomed Eng 51, 6 (2004)

    Article  Google Scholar 

  • H. A. Wark, R. Sharma, K. S. Mathews, E. Fernandez, J. Yoo, B. Christensen, P. Tresco, L. Rieth, F. Solzbacher, R. A. Normann, P. Tathireddy, J Neural Eng, 10, 4 (2013)

    Article  Google Scholar 

  • J. C. Williams, J. A. Hippensteel, J. Dilgen, W. G. Shain, D. R. Kipke, J Neural Eng 4, 4 (2007)

    Article  Google Scholar 

  • O. J. Winter, S. F. Cogan, J. F. Rizzo, J Biomed Mater Res-B, 81 (2007)

  • K. D. Wise, J. B. Angell, A. Starr, IEEE Trans Biomed Eng 17, 3 (1970)

    Google Scholar 

  • Y. Xie, N. Martini, C. Hassler, R. D. Kirch, T. Stieglitz, A. Seifert, U. G. Hofmann, Front Neuroeng 7, 34 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the German Federal Ministry of Education and Research (BMBF grant 01GQ0830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Hassler.

Additional information

Christina Hassler and Julien Guy have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassler, C., Guy, J., Nietzschmann, M. et al. Intracortical polyimide electrodes with a bioresorbable coating. Biomed Microdevices 18, 81 (2016). https://doi.org/10.1007/s10544-016-0106-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0106-7

Keywords

Navigation