Skip to main content
Log in

Retina-on-a-chip: a microfluidic platform for point access signaling studies

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We report on a microfluidic platform for culture of whole organs or tissue slices with the capability of point access reagent delivery to probe the transport of signaling events. Whole mice retina were maintained for multiple days with negative pressure applied to tightly but gently bind the bottom of the retina to a thin poly-(dimethylsiloxane) membrane, through which twelve 100 μm diameter through-holes served as fluidic access points. Staining with toluidine blue, transport of locally applied cholera toxin beta, and transient response to lipopolysaccharide in the retina demonstrated the capability of the microfluidic platform. The point access fluidic delivery capability could enable new assays in the study of various kinds of excised tissues, including retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Y. Berdichevsky, K.J. Staley, M.L. Yarmush, Lab Chip 10, 999 (2010)

    Article  Google Scholar 

  • E. Beurel, R.S. Jope, J. Neuroinflammation 6, 9 (2009)

    Article  Google Scholar 

  • J.T. Borenstein, M.M. Tupper, P.J. Mack, E.J. Weinberg, A.S. Khalil, J. Hsiao, G. García-Cardeña, Biomed. Microdevices 12, 71 (2010)

    Article  Google Scholar 

  • M. Buttini, S. Limonta, H.W.G.M. Boddeke, Neurochem. Int. 29, 25 (1996)

    Article  Google Scholar 

  • D.J. Calkins, Prog. Retin. Eye Res. 31, 702 (2012)

    Article  Google Scholar 

  • G. Chidlow, A. Ebneter, J.P.M. Wood, R.J. Casson, Acta Neuropathol. 121, 737 (2011)

    Article  Google Scholar 

  • G. Chidlow, J.P.M. Wood, A. Ebneter, R.J. Casson, Neurobiol. Dis. 48, 568 (2012)

    Article  Google Scholar 

  • N.W. Choi, M. Cabodi, B. Held, J.P. Gleghorn, L.J. Bonassar, A.D. Stroock, Nat. Mater. 6, 908 (2007)

    Article  Google Scholar 

  • S.D. Crish, R.M. Sappington, D.M. Inman, P.J. Horner, D.J. Calkins, Proc. Natl. Acad. Sci. U. S. A. 107, 5196 (2010)

    Article  Google Scholar 

  • S.D. Crish, J.D. Dapper, S.E. MacNamee, P. Balaram, T.N. Sidorova, W.S. Lambert, D.J. Calkins, Neuroscience 229, 55 (2013)

    Article  Google Scholar 

  • Y.-H. Cui, Y. Le, W. Gong, P. Proost, J. Van Damme, W.J. Murphy, J.M. Wang, J. Immunol. 168, 434 (2002)

    Article  Google Scholar 

  • S.P. Desai, D.M. Freeman, J. Voldman, Lab Chip 9, 1631 (2009)

    Article  Google Scholar 

  • D. Di Carlo, L.Y. Wu, L.P. Lee, Lab Chip 6, 1445 (2006)

    Article  Google Scholar 

  • F. Echevarria, C. Walker, S. Abella, M. Won, R. Sappington, J. Clin. Exp. Ophthalmol. 4, 286 (2013)

  • C.R. Formichella, S.K. Abella, S.M. Sims, H.M. Cathcart, R.M. Sappington, J. Clin. Cell. Immunol. 5, 1 (2014)

    Article  Google Scholar 

  • Y. Gao, D. Majumdar, B. Jovanovic, C. Shaifer, P.C. Lin, A. Zijlstra, D.J. Webb, D. Li, Biomed. Microdevices 13, 539 (2011)

    Article  Google Scholar 

  • A. Günther, S. Yasotharan, A. Vagaon, C. Lochovsky, S. Pinto, J. Yang, C. Lau, J. Voigtlaender-Bolz, S.-S. Bolz, Lab Chip 10, 2341 (2010)

    Article  Google Scholar 

  • R.J. Horvath, N. Nutile-McMenemy, M.S. Alkaitis, J.A. DeLeo, J. Neurochem. 107, 557 (2008)

    Article  Google Scholar 

  • C.-H. Hsu, C. Chen, A. Folch, Lab Chip 4, 420 (2004)

    Article  Google Scholar 

  • Y. Huang, J.C. Williams, S.M. Johnson, Lab Chip 12, 2103 (2012)

    Article  Google Scholar 

  • P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, L.P. Lee, Lab Chip 5, 44 (2005)

    Article  Google Scholar 

  • B. Jo, L.M. Van Lerberghe, K.M. Motsegood, D.J. Beebe, J. Microelectromech. Syst. 9, 76 (2000)

  • M. Kang, C.A. Day, A.K. Kenworthy, E. DiBenedetto, Traffic 13, 1589 (2012)

    Article  Google Scholar 

  • A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Proc. Natl. Acad. Sci. U. S. A. 103, 2480 (2006)

    Article  Google Scholar 

  • S.R. Khetani, S.N. Bhatia, Nat. Biotechnol. 26, 120 (2008)

    Article  Google Scholar 

  • M.S. Kim, T. Kim, S.-Y. Kong, S. Kwon, C.Y. Bae, J. Choi, C.H. Kim, E.S. Lee, J.-K. Park, PLoS One 5, e10441 (2010)

    Article  Google Scholar 

  • C.U. Kloss, M. Bohatschek, G.W. Kreutzberg, G. Raivich, Exp. Neurol. 168, 32 (2001)

    Article  Google Scholar 

  • V. Lecault, M. Vaninsberghe, S. Sekulovic, D.J.H.F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A.K. White, D.G. Kent, M.R. Copley, F. Taghipour, C.J. Eaves, R.K. Humphries, J.M. Piret, C.L. Hansen, Nat. Methods 8, 581 (2011)

    Article  Google Scholar 

  • S.C. Lee, W. Liu, D.W. Dickson, C.F. Brosnan, J.W. Berman, J. Immunol. 150, 2659 (1993)

    Google Scholar 

  • J.C. Lee, G.S. Cho, J.K. Hye, J.H. Lim, Y.K. Oh, W. Nam, J.H. Chung, W.K. Kim, Glia 50, 168 (2005)

    Article  Google Scholar 

  • I. Meyvantsson, D.J. Beebe, Annu Rev Anal Chem (Palo Alto, Calif) 1, 423 (2008)

    Article  Google Scholar 

  • D.C. Morrison, L. Leive, J. Biol. Chem. 250, 2911 (1975)

    Google Scholar 

  • P. Passeraub, A. Almeida, N. Thakor, Biomed. Microdevices 5, 147 (2003)

    Article  Google Scholar 

  • A. Queval, N.R. Ghattamaneni, C.M. Perrault, R. Gill, M. Mirzaei, R.A. McKinney, D. Juncker, Lab Chip 10, 326 (2010)

    Article  Google Scholar 

  • R.M. Sappington, M. Chan, D.J. Calkins, Investig. Ophthalmol. Vis. Sci. 47, 2932 (2006)

    Article  Google Scholar 

  • R.M. Sappington, T. Sidorova, D.J. Long, D.J. Calkins, Investig. Ophthalmol. Vis. Sci. 50, 717 (2009)

    Article  Google Scholar 

  • M. Schindler, M.J. Osborn, D.E. Koppel, Nature 285, 261 (1980)

    Article  Google Scholar 

  • G. Sébire, D. Emilie, C. Wallon, C. Héry, O. Devergne, J.F. Delfraissy, P. Galanaud, M. Tardieu, J. Immunol. 150, 1517 (1993)

    Google Scholar 

  • S. Shawkat, R. Karima, T. Tojo, H. Tadakuma, S.-I. Saitoh, S. Akashi-Takamura, K. Miyake, T. Funatsu, K. Matsushima, J. Biol. Chem. 283, 22962 (2008)

    Article  Google Scholar 

  • S.M. Sims, L. Holmgren, H.M. Cathcart, R.M. Sappington, Am. J. Neurodegener. Dis. 1, 168 (2012)

    Google Scholar 

  • T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)

    Article  Google Scholar 

  • A.M. Taylor, M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Nat. Methods 2, 599 (2005)

    Article  Google Scholar 

  • K. Triantafilou, M. Triantafilou, S. Ladha, A. Mackie, R.L. Dedrick, N. Fernandez, R. Cherry, J. Cell Sci. 114, 2535 (2001)

    Google Scholar 

  • V. Vickerman, J. Blundo, S. Chung, R. Kamm, Lab Chip 8, 1468 (2008)

    Article  Google Scholar 

  • M. Zhang, J. Wu, L. Wang, K. Xiao, W. Wen, Lab Chip 10, 1199 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the following grants 1) National Eye Institute - RO1EY020496-01 (RMS) and P30EY08126 (Vanderbilt Vision Research Center), 2) Research to Prevent Blindness, Inc. - Unrestricted Grant (Vanderbilt Eye Institute) and Career Development Award (RMS), and 3) National Science Foundation Graduate Research Fellowship Program under Grant No. 0909667 and 1445197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodson, K.H., Echevarria, F.D., Li, D. et al. Retina-on-a-chip: a microfluidic platform for point access signaling studies. Biomed Microdevices 17, 114 (2015). https://doi.org/10.1007/s10544-015-0019-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-0019-x

Keywords

Navigation