Skip to main content
Log in

An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Intravascular stenting has emerged as the primary treatment for vascular diseases and has received great attention from the medical community since its introduction two decades ago. The endovascular self-expanding stent is used to treat peripheral artery diseases; however, once implanted, these stents suffer from various cyclic motions caused by pulsatile blood pressure and daily activities. Due to this challenging environment, fatigue performance has become a critical issue for stent design. In this paper, a simple yet intriguing concept of stent design aimed at enhancing pulsatile fatigue life is investigated. The concept of this design is to shift the highly concentrated stresses/strains away from the crown and re-distribute them along the stress-free bar arm by tapering its strut width. Finite element models were developed to evaluate the mechanical integrity and pulsatile fatigue resistance of the stent to various loading conditions. Results show that the fatigue safety factor jumped to 2.5–3.0 times that of the standard stent with constant strut width. This is astonishing considering that the stent profile and scaffolding were not compromised. The findings of this paper provide an excellent approach to the optimization of future stent design to greatly improve stent fatigue performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • P.H. Adler, J. Allen, J. Lessar, R. Francis, J ASTM Int. 4 (2007)

  • F. Auricchio, Int. J. Plast. 17, 971 (2001)

    Article  MATH  Google Scholar 

  • F. Auricchio, R.L. Taylor, Comput. Methods Appl. Mech. Eng. 143, 175 (1997)

    Article  MATH  Google Scholar 

  • A. Benetos, S. Laurent, A.P. Hoeks, P.H. Boutouyrie, M.E. Safar, Arterioscler. Thromb. 13, 90 (1993)

    Article  Google Scholar 

  • S.W. Cheng, A.C. Ting, J. Wong, Cardiovasc. Surg. 9, 133 (2001)

    Article  Google Scholar 

  • L. Cho, M. Roffi, D. Mukherjee, D.L. Bhatt, C. Bajzer, J.S. Yadav, J. Invasive Cardiol. 15, 198 (2003)

    Google Scholar 

  • T.W. Duerig, J. Burpee, M. Mathis, US Patent 6190406 (2001)

  • T.W. Duerig, A. Pelton, D. Stoeckel, Mater. Sci. Eng. A273–275, 149 (1999)

    Article  Google Scholar 

  • T.W. Duerig, D.E. Tolomeo, Min. Invas. Ther. & Allied Technol. 9, 235 (2000)

    Google Scholar 

  • M. Eriksen, Med. Biol. Eng. Comput. 30, 46 (1992)

    Article  Google Scholar 

  • M. Garcia-Toca, H.E. Rodriguez, P.A. Naughton, A. Keeling, S.V. Phade, M.D. Morasch, M.R. Kibbe, M.K. Eskandari, Cardiovasc. Intervent Radiol 35, 263 (2012)

    Article  Google Scholar 

  • T.M. Gibbs, C.S. Peña, J.F. Benenati, Tech. Vasc. Interv. Radiol 13, 37 (2010)

    Article  Google Scholar 

  • X.Y. Gong, D.J. Chwirut, M.R. Mitchell, B.D. Choules, J. ASTM Int. 6 (2009)

  • X.Y. Gong, A.R. Pelton, T.W. Duerig, N. Rebelo, K. Perry, in Conference Proceedings of International Conference on Shape Memory and Superelastic Technologies, ed. By A.R. Pelton, T.W., Duerig, (2003), p. 453

  • M. Grujicic, B. Pandurangan, A. Arakere, J.S. Snipes, J. Mech. Eng. Perform. 21, 2218 (2011)

    Article  Google Scholar 

  • H.M. Hsiao, J. Am. Coll. Cardiol. Interv. 5, 362 (2012)

    Article  Google Scholar 

  • H.M. Hsiao, Y.H. Chiu, K.H. Lee, C.H. Lin, Comput. Aided Des. 44, 757 (2012a)

    Article  Google Scholar 

  • H.M. Hsiao, Y.H. Chiu, T.Y. Wu, J.K. Shen, T.Y. Lee, Med. Eng. Phys. 35, 884 (2013)

    Article  Google Scholar 

  • H.M. Hsiao, K.H. Lee, Y.C. Liao, Y.C. Cheng, Micro & Nano Lett. 7, 430 (2012b)

    Article  Google Scholar 

  • H.M. Hsiao, A. Nikanorov, S. Prabhu, M.K. Razavi, J. Biomed. Mater. Res. B. 91B, 508 (2009)

    Article  Google Scholar 

  • M.R. Jaff, Endovasc. Today 10, 3 (2004)

    Google Scholar 

  • T. Kawasaki, S. Sasayama, S. Yagi, T. Asakawa, T. Hirai, Cardiovasc. Res. 21, 678 (1987)

    Article  Google Scholar 

  • Z.C. Lin, A. Denison, in Conference Proceedings of Materials & Processes for Medical Devices, ed. By S. Shrivastava (2003), p. 205

  • Z.C. Lin, H.M. Hsiao, D. Mackiewicz, B. Anukhin, K. Pike, Adv. Eng. Mater. 11, B189 (2009)

    Article  Google Scholar 

  • A. Mehta, X.Y. Gong, V. Imbeni, A.R. Pelton, R.O. Ritchie, Adv. Mater. 19, 1183 (2007)

    Article  Google Scholar 

  • A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barney, S.W. Robertson, J. Mech. Behav. Biomed. Mater. 1, 153 (2008)

    Article  Google Scholar 

  • L. Petrini, W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, G. Pennati, Funct. Mater. Lett. 5, 1250012 (2012)

    Article  Google Scholar 

  • T.M. Pham, M. DeHerrera, W. Sun, Mech. Biol. Syst. Mater. 2, 1 (2011)

    Google Scholar 

  • D. Scheinert, S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, G. Biamino, A. Schmidt, J. Am. Coll. Cardiol. 45, 312 (2005)

    Article  Google Scholar 

  • M. Silva, E.F. Shepherd, W.O. Jackson, F.J. Dorey, T.P. Schmalzried, J. Arthroplasty 17, 693 (2002)

    Article  Google Scholar 

  • H.B. Smouse, A. Nikanorov, D. LaFlash, Endovasc. Today 6, 60 (2005)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the National Science Council in Taiwan through Grant NSC-102-2221-E-002-130-MY3 and National Taiwan University through Grant 101R7102. The authors gratefully appreciate the support and help from the NSC and National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Ming Hsiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, HM., Yin, MT. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents. Biomed Microdevices 16, 133–141 (2014). https://doi.org/10.1007/s10544-013-9813-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9813-5

Keywords

Navigation