Skip to main content
Log in

Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this article we present a long target droplet polymerase chain reaction (PCR) microsystem for the amplification of the 16S ribosomal RNA gene. It is used for detecting Gram-positive and Gram-negative pathogens at high-throughput and is optimised for downstream species identification. The miniaturised device consists of three heating plates for denaturation, annealing and extension arranged to form a triangular prism. Around this prism a fluoropolymeric tubing is coiled, which represents the reactor. The source DNA was thermally isolated from bacterial cells without any purification, which proved the robustness of the system. Long target sequences up to 1.3 kbp from Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa have successfully been amplified, which is crucial for the successive species classification with DNA microarrays at high accuracy. In addition to the kilobase amplicon, detection limits down to DNA concentrations equivalent to 102 bacterial cells per reaction were achieved, which qualifies the microfluidic device for clinical applications. PCR efficiency could be increased up to 2-fold and the total processing time was accelerated 3-fold in comparison to a conventional thermocycler. Besides this speed-up, the device operates in continuous mode with consecutive droplets, offering a maximal throughput of 80 samples per hour in a single reactor. Therefore we have overcome the trade-off between target length, sensitivity and throughput, existing in present literature. This qualifies the device for the application in species identification by PCR and microarray technology with high sample numbers. Moreover early diagnosis of infectious diseases can be implemented, allowing immediate species specific antibiotic treatment. Finally this can improve patient convalescence significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • D. Chen, M. Mauk, X. Qiu, C. Liu, J. Kim, S. Ramprasad, S. Ongagna, W.R. Abrams, D. Malamud, P.L.A.M. Corstjens, H.H. Bau, An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed. Microdevices 12(4), 705–719 (2010). doi:10.1007/s10544-010-9423-4

    Article  Google Scholar 

  • J. Chen, M. Wabuyele, H. Chen, D. Patterson, M. Hupert, H. Shadpour, D. Nikitopoulos, S. Soper, Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate. Anal. Chem. 77(2), 658–666 (2005). doi:10.1021/ac048758e

    Article  Google Scholar 

  • L.J. Chien, J.H. Wang, T.M. Hsieh, P.H. Chen, P.J. Chen, D.S. Lee, C.H. Luo, G.B. Lee, A micro circulating PCR chip using a suction-type membrane for fluidic transport. Biomed. Microdevices 11(2), 359–367 (2009). doi:10.1007/s10544-008-9242-z

    Article  Google Scholar 

  • Z. Chunsun, X. Jinliang, W. Jianqin, W. Hanping, Experimental study of continuous-flow polymerase chain reaction microfluidics based on polytetrafluoroethylene capillary. Chin. J. Anal. Chem. 34(8), 1197–1202 (2006)

    Article  Google Scholar 

  • N. Crews, T. Ameel, C. Wittwer, B. Gale, Flow-induced thermal effects on spatial DNA melting. Lab Chip 8(11), 1922–1929 (2008). doi:10.1039/b807034b

    Article  Google Scholar 

  • M. Curcio, J. Roeraade, Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Anal. Chem. 75(1), 1–7 (2003). doi:10.1021/ac0204146

    Article  Google Scholar 

  • K. Dorfman, M. Chabert, J. Codarbox, G. Rousseau, P. de Cremoux, J. Viovy, Contamination free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications. Anal. Chem. 77(11), 3700–3704 (2005). doi:10.1021/ac050031i

    Article  Google Scholar 

  • W. Dunn, S. Jacobson, L. Waters, N. Kroutchinina, J. Khandurina, R. Foote, M. Justice, L. Stubbs, J. Ramsey, PCR amplification and analysis of simple sequence length polymorphisms in mouse DNA using a single microchip device. Anal. Biochem. 277(1), 157–160 (2000)

    Article  Google Scholar 

  • N. Friedman, D. Meldrum, Capillary tube resistive thermal cycling. Anal. Chem. 70(14), 2997–3002 (1998)

    Article  Google Scholar 

  • T. Fukuba, T. Yamamoto, T. Naganuma, T. Fujii, Microfabricated flow-through device for DNA amplification—towards in situ gene analysis. Chem. Eng. J. 101(1–3), 151–156 (2004). doi:10.1016/j.cej.2003.11.016. 7th International Conference on Microreaction Technology (IMRET 7), Lausanne, Switzerland, Sep 2003

    Article  Google Scholar 

  • R. Hartung, A. Broesing, G. Sczcepankiewicz, U. Liebert, N. Haefner, M. Duerst, J. Felbel, D. Lassner, J.M. Koehler, Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR. Biomed. Microdevices 11(3), 685–692 (2009). doi:10.1007/s10544-008-9280-6

    Article  Google Scholar 

  • M. Hashimoto, P. Chen, M. Mitchell, D. Nikitopoulos, S. Soper, M. Murphy, Rapid PCR in a continuous flow device. Lab Chip 4(6), 638–645 (2004). doi:10.1039/b406860b

    Article  Google Scholar 

  • J. Kim, J. Lee, S. Seong, S. Cha, S. Lee, J. Kim, T. Park, Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip. Biochem. Eng. J. 29(1–2), 91–97 (2006). doi:10.1016/j.bej.2005.02.032. 10th Symposium of the Young-Asian-Biochemical-Engineers-Community (YABEC), Osaka City, Japan, 23-25 Sep 2004

    Article  Google Scholar 

  • E. Lagally, P. Simpson, R. Mathies, Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens. Actuators B Chem. 63(3), 138–146 (2000)

    Article  Google Scholar 

  • Y. Li, D. Xing, C. Zhang, Rapid detection of genetically modified organisms on a continuous-flow polymerase chain reaction microfluidics. Anal. Biochem. 385(1), 42–49 (2009). doi:10.1016/j.ab.2008.10.028

    Article  Google Scholar 

  • W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, K. Schleifer, ARB: a software environment for sequence data. Nucleic Acids Res. 32(4), 1363–1371 (2004). doi:10.1093/nar/gkh293

    Article  Google Scholar 

  • M. Mahalanabis, J. Do, H. ALMuayad, J.Y. Zhang, C.M. Klapperich, An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed. Microdevices 12(2), 353–359 (2010). doi:10.1007/s10544-009-9391-8

    Article  Google Scholar 

  • K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, H. Erlich, Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51(Pt 1), 263–273 (1986). [PubMed:3472723]

    Google Scholar 

  • P. Obeid, T. Christopoulos, H. Crabtree, C. Backhouse, Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal. Chem. 75(2), 288–295 (2003). doi:10.1021/ac0260239

    Article  Google Scholar 

  • N. Pamme, Continuous flow separations in microfluidic devices. Lab Chip 7(12), 1644–1659 (2007). doi:10.1039/b712784g

    Article  Google Scholar 

  • N. Panaro, X. Lou, P. Fortina, L. Kricka, P. Wilding, Surface effects on PCR reactions in multichip microfluidic platforms. Biomed. Microdevices 6(1), 75–80 (2004)

    Article  Google Scholar 

  • N. Park, S. Kim, J. Hahn, Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Anal. Chem. 75(21), 6029–6033 (2003). doi:10.1021/ac0346959

    Article  Google Scholar 

  • I. Pjescic, C. Tranter, P.L. Hindmarsh, N.D. Crews, Glass-composite prototyping for flow PCR with in situ DNA analysis. Biomed. Microdevices 12(2), 333–343 (2010). doi:10.1007/s10544-009-9389-2

    Article  Google Scholar 

  • N. Ramalingam, H.B. Liu, C.C. Dai, Y. Jiang, H. Wang, Q. Wang, K.M. Hui, H.Q. Gong, Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications. Biomed. Microdevices 11(5), 1007–1020 (2009). doi:10.1007/s10544-009-9318-4

    Article  Google Scholar 

  • W. Rasband, ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA (1997–2009), http://rsb.info.nih.gov/ij/

    Google Scholar 

  • A.F. Sauer-Budge, P. Mirer, A. Chatterjee, C.M. Klapperich, D. Chargin, A. Sharon, Low cost and manufacturable complete microTAS for detecting bacteria. Lab Chip 9(19), 2803–2810 (2009). doi:10.1039/b904854e

    Article  Google Scholar 

  • I. Schneegass, R. Brautigam, J. Kohler, Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 1(1), 42–49 (2001). doi:10.1039/b103846j

    Article  Google Scholar 

  • K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, A heater-integrated transparent microchannel chip for continuous-flow PCR. Sens. Actuators B Chem. 84(2–3), 283–289 (2002)

    Article  Google Scholar 

  • F. Wang, M.A. Burns, Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed. Microdevices 11(5), 1071–1080 (2009). doi:10.1007/s10544-009-9324-6

    Article  Google Scholar 

  • N. Wellinghausen, B. Wirths, A. Franz, L. Karolyi, R. Marre, U. Reischl, Algorithm for the identification of bacterial pathogens in positive blood cultures by real-time LightCycler polymerase chain reaction (PCR) with sequence-specific probes. Diagn. Microbiol. Infect. Dis. 48(4), 229–241 (2004). doi:10.1016/j.diagmicrobio.2003.11.005

    Article  Google Scholar 

  • N. Wellinghausen, A.J. Kochem, C. Disque, H. Muehl, S. Gebert, J. Winter, J. Matten, S.G. Sakka, Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J. Clin. Microbiol. 47(9), 2759–2765 (2009). doi:10.1128/JCM.00567-09

    Article  Google Scholar 

  • H. Wiesinger-Mayr, K. Vierlinger, R. Pichler, A. Kriegner, A.M. Hirschl, E. Presterl, L. Bodrossy, C. Noehammer, Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition. BMC Microbiol. 7 (2007). doi:10.1186/1471-2180-7-78

  • X. Yu, M. Susa, C. Knabbe, R. Schmid, T. Bachmann, Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates. J. Clin. Microbiol. 42(9), 4083–4091 (2004). doi:10.1128/JCM.42.9.4083-4091.2004

    Article  Google Scholar 

  • C. Zhang, D. Xing, Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res. 35(13), 4223–4237 (2007). doi:10.1093/nar/gkm389

    Article  Google Scholar 

  • C. Zhang, D. Xing, Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification. Biomed. Microdevices 12(1), 1–12 (2010). doi:10.1007/s10544-009-9352-2

    Article  MATH  Google Scholar 

  • C. Zhang, J. Xu, W. Ma, W. Zheng, PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24(3), 243–284 (2006). doi:10.1016/j.biotechadv.2005.10.002

    Article  Google Scholar 

  • Y. Zhang, P. Ozdemir, Microfluidic DNA amplification-A review. Anal. Chim. Acta 638(2), 115–125 (2009). doi:10.1016/j.aca.2009.02.038

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge S. Schönthaler for the expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes R. Peham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peham, J.R., Grienauer, W., Steiner, H. et al. Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity. Biomed Microdevices 13, 463–473 (2011). https://doi.org/10.1007/s10544-011-9514-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9514-x

Keywords

Navigation