Skip to main content
Log in

A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The unlimited proliferative and differentiative capacities of embryonic stem cells (ESCs) are tightly regulated by their microenvironment. Local concentrations of soluble factors, cell-cell interactions and extracellular matrix signaling are just a few variables that influence ESC fate. A common method employed to induce ESC differentiation involves the formation of cell aggregates called embryoid bodies (EBs), which recapitulate early stages of embryonic development. EBs are normally formed in suspension cultures, producing heterogeneously shaped and sized aggregates. The present study demonstrates the usage of a microfluidic traps system which supports prolonged EB culturing. The traps are uniquely designed to facilitate cell capture and aggregation while offering efficient gas/nutrients exchange. A finite element simulation is presented with emphasis on several aspects critical to appropriate design of such bioreactors for ESC culture. Finally, human ESC, mouse Nestin-GFP ESC and OCT4-EGFP ESCs were cultured using this technique and demonstrated extended viability for more than 5 days. In addition, EBs developed and maintained a polarized differentiation pattern, possibly as a result of the nutrient gradients imposed by the traps bioreactor. The novel microbioreactor presented here can enhance future embryogenesis research by offering tight control of culturing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • D.M. Adelman, M. Gertsenstein, A. Nagy, M.C. Simon, E. Maltepe, Genes Dev. 4(24), 3191–3203 (2000)

    Article  Google Scholar 

  • A. Bransky, N. Korin, S. Levenberg, Biomed. Microdevices 10(3), 421 (2008)

    Article  Google Scholar 

  • D.M. Cochran, D. Fukumura, M. Ancukiewicz, P. Carmeliet, R.K. Jain, Ann. Biomed. Eng. 34(8), 1247–58 (2006)

    Article  Google Scholar 

  • D. Di Carlo, L.Y. Wu, L.P. Lee, Lab Chip 6(11), 1445–49 (2006)

    Article  Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442(7101), 403 (2006)

    Article  Google Scholar 

  • T. Ezashi, P. Das, R.M. Roberts, PNAS; 102(13), 4783–4788 (2005)

    Article  Google Scholar 

  • M. Gassmann, J. Fandrey, S. Bichet, M. Wartenberg, H.H. Marti, C. Bauer et al., PNAS 93(7), 2867–72 (1996)

    Article  Google Scholar 

  • A.S. Gleiberman, J.M. Encinas, J.L. Mignone, T. Michurina, M.G. Rosenfeld, G. Enikolopov, Dev. Dyn. 234(2), 413–21 (2005)

    Article  Google Scholar 

  • Y.S. Hwang, B.G. Chung, D. Ortmann, N. Hattori, H.C. Moeller, A. Khademhosseini, PNAS 106(40), 16978–83 (2009)

    Article  Google Scholar 

  • E.J. Itskovitz, M. Schuldiner, D. Karsenti, A. Eden, O. Yanuka, M. Amit et al., Mol. Med. 6(2), 88–95 (2000)

    Google Scholar 

  • M.H. Johnson, Annu Rev Cell Dev Biol (2009)

  • J.M. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.Y. Suh et al., Lab Chip 7(6), 786–794 (2007)

    Article  Google Scholar 

  • G.M. Keller, Curr. Opin. Cell Biol. 7(6), 862 (1995)

    Article  Google Scholar 

  • N. Korin, A. Bransky, U. Dinnar, S. Levenberg, Lab Chip 7(5), 611–617 (2007)

    Article  Google Scholar 

  • N. Korin, A. Bransky, M. Khoury, U. Dinnar, S. Levenberg, Biotechnol. Bioeng. 102(4), 1222–30 (2009)

    Article  Google Scholar 

  • H.C. Moeller, M.K. Mian, S. Shrivastava, B.G. Chung, A. Khademhosseini, Biomaterials 29(6), 752–763 (2008)

    Article  Google Scholar 

  • J.C. Mohr, J.J. de Pablo, S.P. Palecek, Biomaterials 27(36), 6032 (2006)

    Article  Google Scholar 

  • S.J. Morrison, M. Csete, A.K. Groves, W. Melega, B. Wold, D.J. Anderson, J. Neurosci. 20(19), 7370–76 (2000)

    Google Scholar 

  • E.S. Ng, R.P. Davis, L. Azzola, E.G. Stanley, A.G. Elefanty, Blood 106(5), 1601–1603 (2005)

    Article  Google Scholar 

  • J.S. Odorico, D.S. Kaufman, J.A. Thomson, Stem Cells 19(3), 193–204 (2001)

    Article  Google Scholar 

  • J. Park, C.H. Cho, N. Parashurama, Y. Li, F. Berthiaume, M. Toner et al., Lab Chip 7(8), 1018–28 (2007)

    Article  Google Scholar 

  • M.J. Powers, K. Domansky, M.R. Kaazempur, A. Kalezi, A. Capitano, A. Upadhyaya et al., Biotechnol. Bioeng. 78(3), 257–269 (2002)

    Article  Google Scholar 

  • S. Provot, D. Zinyk, Y. Gunes, R. Kathri, Q. Le, H.M. Kronenberg, et al. J. Cell. Biol. 7;177(3), 451–64 (2007)

  • R. Rajpurohit, C.J. Koch, Z. Tao, C.M. Teixeira, I.M. Shapiro, J. Cell. Physiol. 168(2), 424–432 (1996)

    Article  Google Scholar 

  • P. Roy, H. Baskaran, A.W. Tilles, M.L. Yarmush, M. Toner, Ann. Biomed. Eng. 29(11), 947–55 (2001)

    Article  Google Scholar 

  • D. Shweiki, A. Itin, D. Soffer, E. Keshet, Nature 359(6398), 845 (1992)

    Article  Google Scholar 

  • M.C. Simon, B. Keith, Nat. Rev. Mol. Cell Biol. 9(4), 285 (2008)

    Article  Google Scholar 

  • A.M. Skelley, O. Kirak, R. Jaenisch, J. Voldman, uTAS 581–583 (2007)

  • D. Solter, J. Gearhart, Science 283(5407), 1468–70 (1999)

    Article  Google Scholar 

  • A. Spradling, B.D. Drummond, T. Kai, Nature 414(6859), 98 (2001)

    Article  Google Scholar 

  • J.A. Thomson, E.J. Itskovitz, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall et al., Science 282(5391), 1145–47 (1998)

    Article  Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab Chip 5(1), 14–19 (2005)

    Article  Google Scholar 

  • M.D. Ungrin, C. Joshi, A. Nica, C. Bauwens, P.W. Zandstra, PLoS ONE 3(2), e1565 (2008)

    Article  Google Scholar 

  • L.G. Villa-Diaz, Y.S. Torisawa, T. Uchida, J. Ding, N.C. Nogueira-de-Souza, K.S. O'Shea, S. Takayama, G.D. Smith, Lab Chip 9(12), 1749–55 (2009)

    Article  Google Scholar 

  • F.M. Watt, B.L. Hogan, Science 287(5457), 1427–30 (2000)

    Article  Google Scholar 

  • L. Wu, D. Di Carlo, L. Lee, Biomed. Microdevices 10(2), 197 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulamit Levenberg.

Additional information

Maria Khoury and Avishay Bransky equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoury, M., Bransky, A., Korin, N. et al. A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates. Biomed Microdevices 12, 1001–1008 (2010). https://doi.org/10.1007/s10544-010-9454-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9454-x

Keywords

Navigation