Skip to main content
Log in

Integrated microfluidic biophotonic chip for laser induced fluorescence detection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Integrated Lab-on-a-Chip or Micro-Total Analysis Systems offer several advantages for the detection of active chemical and biological species. In this work, an integrated microfluidic biophotonic chip is proposed for carrying out laser induced fluorescence detection. A Spectrometer-on-Chip device, specifically designed for multiple fluorescence detections at different emission wavelengths is integrated with the opto-microfluidic chip fabricated on Silicon-Polymer hybrid platform. The input fiber from the laser source, and output fiber coupled with a Spectrometer-on-Chip were integrated with the microfluidic channel so as to make a robust setup. Fluorescence detection was carried out using Alexafluor 647 tagged antibody particles. The experimental results show that the proposed biophotonic microfluidic device is highly suitable for high throughput detection of chemical and biological specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652 (2002)

    Article  Google Scholar 

  • S. Balslev, A.M. Jørgensen, B.B. Olsen, K.B. Mogensen, K.B. Mogensen, D. Snakenborg, O. Geschke, J.P. Kutter, A. Kristensen, Lab-on-a-chip with integrated optical transducers. Lab Chip 6, 213–217 (2006)

    Article  Google Scholar 

  • A. Bettiol, E. Teo, C. Udalagama, S.V. Rao, J. van Kan, P. Shao, F. Watt, Integrating photonic and microfluidic structures on a device fabricated using proton beam writing. Proc.of SPIE Vol 6186, 61860F-1–61860F-8 (2006)

    Google Scholar 

  • M. Brehmer, L. Conrad, L. Funk, New developments in soft lithography. J. Dispers. Sci. Technol. 24, 291–304 (2003)

    Article  Google Scholar 

  • M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, An integrated nanoliter DNA analysis device. Science 282, 484 (1998)

    Article  Google Scholar 

  • M.L. Chabinyc, D.T. Chiu, J.C. McDonald, A.D. Stroock, J.F. Christian, A.M. Karger, G.M. Whitesides, An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem. 73, 4491–4498 (2001)

    Article  Google Scholar 

  • A. Chandrasekaran, A. Acharya, J.L. You, K.Y. Soo, M. Packirisamy, I. Stiharu, A. Darveau, Hybrid integrated silicon microfluidic platform for fluorescence based biodetection. Sensors 7, 1901–1915 (2007)

    Article  Google Scholar 

  • W.J. Chang, D. Akin, M. Sedlak, M.R. Ladisch, R. Bashir, Poly (dimethylsiloxane)(PDMS) and silicon hybrid biochip for bacterial culture. Biomed. Microdevices 5, 281–290 (2003)

    Article  Google Scholar 

  • D.A. Cohen, J.A. Nolde, C.S. Wang, E.J. Skogen, A. Rivlin, L.A. Coldren, Biophotonic integrated circuits. Proc.SPIE 5594, 81–93 (2004)

    Article  Google Scholar 

  • P.S. Dittrich, K. Tachikawa, A. Manz, Micro total analysis systems. Latest advancements and trends. Anal. Chem. 78, 3887–3908 (2006)

    Article  Google Scholar 

  • P. Friis, K. Hoppe, O. Leistiko, K.B. Mogensen, J. Hübner, J.P. Kutter, Monolithic integration of microfluidic channels and optical waveguides in silica on silicon. Appl. Opt. 40, 6246–6251 (2001)

    Article  Google Scholar 

  • R. Irawan, C.M. Tay, S.C. Tjin, C.Y. Fu, Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications. Lab Chip 6, 1095–1098 (2006)

    Article  Google Scholar 

  • S.C. Jakeway, A.J. de Mello, E.L. Russell, Miniaturized total analysis systems for biological analysis. Fresenius J. Anal. Chem. 366, 525–539 (2000)

    Article  Google Scholar 

  • S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. Krug, Planar waveguide echelle gratings in silica-on-silicon. IEEE Photonics Technol Lett 16, 503–505 (2004)

    Article  Google Scholar 

  • L. Jiang, K. P. Gerhardt, B. Myer, Y. Zohar, S. Pau, An SU-8 based fluidic immuno-spectroscopic lab-on-a-chip for rapid quantitative detection of biomolecules. Micro Electro Mechanical Systems, 2008.MEMS 2008.IEEE 21st International Conference on, 204–207 (2008)

  • P. Krulevitch, W. Benett, J. Hamilton, M. Maghribi, K. Rose, Polymer-based packaging platform for hybrid microfluidic systems. Biomed. Microdevices 4, 301–308 (2002)

    Article  Google Scholar 

  • L. Landsberger, M. Kharizi, M. Pranjape, On hillocks generated during anisotropic etching of silicon in TMAH. J Microelectromech Syst 5(2), 106–116 (1996)

    Article  Google Scholar 

  • A. Leeds, E. Van Keuren, M. Durst, T. Schneider, J. Currie, M. Paranjape, Integration of microfluidic and microoptical elements using a single-mask photolithographic step. Sens Actuators A Phys 115, 571–580 (2004)

    Article  Google Scholar 

  • O. Leistiko, P.F. Jensen, Integrated bio/chemical microsystems employing optical detection: the clip-on. J Micromech. Microeng 8, 148–150 (1998)

    Article  Google Scholar 

  • V. Lien, Y. Berdichevsky, Y. H. Lo, J. Khandurina, A. Guttman, Monolithic photonics-microfluidics integration for micrototal analysis systems. Lasers and Electro-Optics, 2003.CLEO‘03.Conference on 4, (2003)

  • J.C. McDonald, G.M. Whitesides, Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002)

    Article  Google Scholar 

  • M. Packirisamy, A. Balakrishnan, Planar waveguide based grating device and spectrometer for species-specific wavelength detection. U.S Patent No. 7324195, January (2008)

  • D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002)

    Article  Google Scholar 

  • J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography. Materials Today 8, 50–56 (2005)

    Article  Google Scholar 

  • J.M. Ruano, A. Glidle, A. Cleary, A. Walmsley, J.S. Aitchison, J.M. Cooper, Design and fabrication of a silica on silicon integrated optical biochip as a fluorescence microarray platform. Biosens. Bioelectron. 18, 175–184 (2003)

    Article  Google Scholar 

  • B. Samel, V. Nock, A. Russom, P. Griss, G. Stemme, A disposable lab-on-a-chip platform with embedded fluid actuators for active nanoliter liquid handling. Biomed. Microdevices 9, 61–67 (2007)

    Article  Google Scholar 

  • J. Seo, L.P. Lee, Disposable integrated microfluidics with self-aligned planar microlenses. Sens Actuators B, Chem 99, 615–622 (2004)

    Article  Google Scholar 

  • B.G. Splawn, F.E. Lytle, On-chip absorption measurements using an integrated waveguide. Anal. Bioanal. Chem. 373, 519–525 (2002)

    Article  Google Scholar 

  • X.T. Su, K. Singh, C. Capjack, J. Petrcek, C. Backhouse, W. Rozmus, Measurements of light scattering in an integrated microfluidic waveguide cytometer. J. Biomed. Opt. 13, 024024 (2008)

    Article  Google Scholar 

  • E. Thrush, O. Levi, W. Ha, K. Wang, S.J. Smith, J.S. Harris, Integrated bio-fluorescence sensor. J. Chromatogr. A 1013, 103–110 (2003)

    Article  Google Scholar 

  • T. Vilkner, D. Janasek, A. Manz, Micro total analysis systems. Recent developments. Anal. Chem. 76, 3373–3385 (2004)

    Article  Google Scholar 

  • J.R. Webster, M.A. Burns, D.T. Burke, C.H. Mastrangelo, Monolithic capillary electrophoresis device with integrated fluorescence detector. Anal. Chem. 73, 1622–1626 (2001)

    Article  Google Scholar 

  • I.M. White, H. Zhu, J. Suter, N.M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE Sens. J 7, 28–35 (2007)

    Article  Google Scholar 

  • Y. Xia, G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998)

    Article  Google Scholar 

  • S. Yegnanarayanan, W. Roman, M. Soltani, G. Cremona, H. Lu, A. Adibi, On-chip integration of microfluidic channels with ultra-high Q silicon microdisk resonators for lab-on-a-chip sensing applications. in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007, LEOS, 50–51 (2007)

Download references

Acknowledgement

The authors would like to thank the Canadian Institute for Photonic Innovations (CIPI) and Enablence Inc. for their support in this project. The authors also sincerely thank Mr. Eric Duchesne of Ecole Polytechnique de Montreal for his assistance with the Scanning Electron Microscopy and Mr. Donald Walter Berry of McGill University for his assistance with wafer dicing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Chandrasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekaran, A., Packirisamy, M. Integrated microfluidic biophotonic chip for laser induced fluorescence detection. Biomed Microdevices 12, 923–933 (2010). https://doi.org/10.1007/s10544-010-9447-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9447-9

Keywords

Navigation