Skip to main content
Log in

Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper presents the design and implementation of a low-cost miniature PCR device consisting of a disposable reactor chip and a miniature thermal cycler. The simple fabrication of the PCR chip by PDMS (Polydimethylsiloxane) does not need micro-machining or photolithography processes. The thermal cycler was built with a thin film heater for heating and a fan for rapid cooling. This device can perform PCR tests in a single well chip or a multiple-well chip. It can run PCR reactions of different volumes to meet specific application requirements. The smallest reaction volume tested in this work is 0.9 μL. In addition, this device fits any standard fluorescence microscope for real time detection, which makes real time PCR affordable for most research labs and clinics with a fluorescence microscope. Real-time PCR of E. coli stx1 has been demonstrated with the device described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Belgrader, S. Young, B. Yuan, M. Primeau, L.A. Christel, F. Pourahmadi, and M.A. Northrup, Analytical Chemistry 73, 286 (2001).

    Google Scholar 

  • M.Q. Bu, T. Melvin, G. Ensell, J. Wilkinson, and A.G.R. Evans, Journal of Micromechanics and Microengineering 13, S125 (2003).

    Article  Google Scholar 

  • P. Gascoyne, J. Satayavivad, and M. Ruchirawat, Acta Tropica 89, 357 (2004).

    Article  Google Scholar 

  • B.C. Giordano, J. Ferrance, S. Swedberg, A.F.R. Huhmer, and J.P. Landers, Analytical Biochemistry 291, 124–132 (2001).

    Article  Google Scholar 

  • M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, and M.C. Murphy, Lab on a Chip 4, 638 (2004).

    Article  Google Scholar 

  • M. Hashimoto, Y. He, and E.S. Yeung, Nucleic Acids Research 31, e41 (2003).

    Article  Google Scholar 

  • J.A. Higgins, S. Nasarabadi, J.S. Karns, D.R. Shelton, M. Cooper, A. Gbakima, and R.P. Koopman, Biosensors and Bioelectronics 18, 1115 (2003).

    Article  Google Scholar 

  • J.W. Hong, T. Fujii, M. Seki, T. Yamamoto, and I. Endo, Electrophoresis 22, 328 (2001).

    Article  Google Scholar 

  • J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, and J.M. Ramsey, Analytical Chemistry 72, 2995 (2000).

    Article  Google Scholar 

  • M.U. Kopp, A.J. de Mello, and A. Manz, Science 280 1046 (1998).

    Article  Google Scholar 

  • E.T. Lagally, C.A. Emrich, and R.A. Mathies, Lab On a Chip 1, 102 (2001).

    Article  Google Scholar 

  • E.T. Lagally, I. Medintz, and R.A. Mathies, Analytical Chemistry 73, 565 (2001).

    Article  Google Scholar 

  • T.M. Lee, M.C. Carles, and I. Hsing, Lab On a Chip 3, 100 (2003).

    Google Scholar 

  • D.S. Lee, S.H. Park, H.S. Yang, K.H. Chung, T.H. Yoon, S.J. Kim, K.W. Kim, and Y.T. Kim, Lab on a Chip 4, 401 (2004a).

    Article  Google Scholar 

  • D.S. Lee, M.H. Wu, U. Ramesh, C.W. Lin, T.M. Lee, and P.H. Chen, Sensors and Actuators B: Chemical 100, 409 (2004b).

    Google Scholar 

  • Y.C. Lin, C.C. Yang, and M.Y. Huang, Sensors and Actuators B: Chemical 71, 127 (2000).

    Google Scholar 

  • J. Liu, M. Enzelberger and S. Quake, Electrophoresis 23, 1531 (2002).

    Google Scholar 

  • Y. Liu, C.B. Rauch, R.L. Stevens, R. Lenigk, J. Yang, D.B. Rhine, and P. Grodzinski, Analytical Chemistry 74, 3063 (2002).

    Google Scholar 

  • H. Nagai, Y. Murakami, K. Yokoyama, E. Tamiya, and Y. Morita, Analytical Chemistry 73, 1043 (2001).

    Article  Google Scholar 

  • P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, and C.J. Backhouse, Analytical Chemistry 75, 288 (2003).

    Article  Google Scholar 

  • I. Schneegass, R. Brautigam, and H.M. Kohler, Lab on a Chip 1, 42–49 (2001).

    Google Scholar 

  • K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, Sensors Actuators B: Chemical 84, 283 (2002).

    Google Scholar 

  • E.K. Wheeler, W. Benett, P. Stratton, J. Richards, A. Chen, A. Christian, K.D. Ness, J. Ortega, L.G. Li, T.H. Weisgraber, K. Goodson, and F. Milanovich, Analytical Chemistry 76, 4011 (2004).

    Google Scholar 

  • J. West, B. Karamata, B. Lillis, J.P. Gleeson, J. Alderman, J.K. Collins, W. Lane, A. Mathewson, and H. Berney, Lab on a Chip 2, 224 (2002).

    Article  Google Scholar 

  • J. Yang, Y. Liu, C.B. Rauch, R.L. Stevens, R. Liu, R. Lenigk, and P. Grodzinski, Lab On a Chip 2, 179 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Q., Xu, B., Fu, R. et al. Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler. Biomed Microdevices 7, 273–279 (2005). https://doi.org/10.1007/s10544-005-6069-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-6069-8

Keywords

Navigation