Skip to main content
Log in

Nonstandard finite element de Rham complexes on cubical meshes

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Two general operations are proposed on finite element differential complexes on cubical meshes that can be used to construct and analyze sequences of “nonstandard” convergent methods. The first operation, called DoF-transfer, moves edge degrees of freedom to vertices in a way that reduces global degrees of freedom while increasing continuity order at vertices. The second operation, called serendipity, eliminates interior bubble functions and degrees of freedom locally on each element without affecting edge degrees of freedom. These operations can be used independently or in tandem to create nonstandard complexes that incorporate Hermite, Adini and “trimmed-Adini” elements. The resulting elements lead to convergent non-conforming methods for problems requiring stronger regularity and satisfy a discrete Korn inequality. Potential benefits of applying these elements to Stokes, biharmonic and elasticity problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adini, A., Clough, R.W.: Analysis of plate bending by the finite element method. NSF Report G. 7337, University of California, Berkeley (1961)

  2. Arnold, D., Awanou, G.: Finite element differential forms on cubical meshes. Math. Comput. 83(288), 1551–1570 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Awanou, G.: The serendipity family of finite elements. Found. Comput. Math. 11(3), 337–344 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Boffi, D., Bonizzoni, F.: Finite element differential forms on curvilinear cubic meshes and their approximation properties. Numer. Math. 129(1), 1–20 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Arnold, D.N., Logg, A.: Periodic table of the finite elements. SIAM News 47(9), 212 (2014)

    Google Scholar 

  8. Arnold, D.N., Qin, J.: Quadratic velocity/linear pressure Stokes elements. Adv. Comput. Methods Partial Differ. Equ. 7, 28–34 (1992)

    Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  10. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology, vol. 82. Springer, Berlin (2013)

    MATH  Google Scholar 

  11. Brenner, S.C.: Forty years of the Crouzeix–Raviart element. Numer. Methods Partial Differ. Equ. 31(2), 367–396 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007)

    Google Scholar 

  13. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Buffa, A., Rivas, J., Sangalli, G., Vázquez, R.: Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49(2), 818–844 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Christiansen, S.H., Hu, J., Hu, K.: Nodal finite element de Rham complexes. Numer. Math. 139, 1–36 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Christiansen, S.H., Hu, K.: Generalized finite element systems for smooth differential forms and Stokes’ problem. Numerische Mathematik 140(2), 327–371 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Da Veiga, L.B., Brezzi, F., Marini, L., Russo, A.: Serendipity nodal VEM spaces. Comput. Fluids 141, 2–12 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Serendipity face and edge VEM spaces. Preprint arXiv:1606.01048 (2016)

  20. Dummit, D.S., Foote, R.M.: Abstract Algebra, vol. 3. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  21. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Floater, M., Gillette, A.: Nodal bases for the serendipity family of finite elements. Found. Comput. Math. 17(4), 879–893 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Gillette, A., Kloefkorn, T.: Trimmed serendipity finite element differential forms. Math. Comput. 88(316), 583–606 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Hiptmair, R.: Canonical construction of finite elements. Math. Comput. Am. Math. Soc. 68(228), 1325–1346 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11(July 2003), 237–339 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Hu, J.: Finite element approximations of symmetric tensors on simplicial grids in \(\mathbb{R}^{n}\): the higher order case. J. Comput. Math. 33, 283–296 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Hu, J., Yang, X., Zhang, S.: Capacity of the Adini element for biharmonic equations. J. Sci. Comput. 69(3), 1366–1383 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Hu, J., Zhang, S.: A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math. 58(2), 297–307 (2015)

    MathSciNet  MATH  Google Scholar 

  29. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Linke, A., Merdon, C., Neilan, M., Neumann, F.: Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem. Math. Comput. 87, 1543–1566 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Mardal, K.A., Tai, X.C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35(3), 315–341 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Nédélec, J.C.: A new family of mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 50(1), 57–81 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84, 2059–2081 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Neilan, M., Sap, D.: Stokes elements on cubic meshes yielding divergence-free approximations. Calcolo 53(3), 263–283 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Nilssen, T., Tai, X.C., Winther, R.: A robust nonconforming \(H^{2}\)-element. Math. Comput. 70(234), 489–505 (2001)

    MATH  Google Scholar 

  37. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Dold, A., Eckmann, B. (eds.) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606. Springer, Berlin, Heidelberg (1977). https://doi.org/10.1007/BFb0064470

  38. Stenberg, R.: A nonstandard mixed finite element family. Numer. Math. 115(1), 131–139 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Tai, X.C., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43(4), 287–306 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Wang, M.: The generalized Korn inequality on nonconforming finite element spaces. Chin. J. Numer. Math. Appl. 16, 91–96 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Wang, M.: On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J. Numer. Anal. 39(2), 363–384 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Wang, M., Shi, Z.C., Xu, J.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106(2), 335–347 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, S.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74(250), 543–554 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, S.: Stable finite element pair for Stokes problem and discrete Stokes complex on quadrilateral grids. Numer. Math. 133(2), 371–408 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaibo Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AG was supported in part by National Science Foundation Award DMS-1522289. The research of KH leading to the results of this paper was partly carried out during his affiliation with the University of Oslo, supported in part by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 339643. SZ was supported in part by the National Natural Science Foundation of China with Grants No. 11471026, No. 11871465.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillette, A., Hu, K. & Zhang, S. Nonstandard finite element de Rham complexes on cubical meshes. Bit Numer Math 60, 373–409 (2020). https://doi.org/10.1007/s10543-019-00779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00779-y

Keywords

Mathematics Subject Classification

Navigation