Skip to main content
Log in

Numerical computation of H-bases

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper gives a numerically stable method to compute H-basis which is based on the computing a minimal basis for the module of syzygies using singular value decomposition. We illustrate the performance of this method by means of various examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batselier, K., Dreesen, P., De Moor, B.: The canonical decomposition of \({C}_d^n\) and numerical Gröbner and border bases. SIAM J. Matrix Anal. Appl. 35, 1242–1264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batselier, K., Dreesen, P., De Moor, B.: A fast recursive orthogonalization scheme for the Macaulay matrix. J. Comput. Appl. Math. 267, 20–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batselier, K., Dreesen, P., De Moor, B.: On the null spaces of the Macaulay matrix. Linear Algebra Appl. 460, 259–289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boor, C.: Computational aspects of multivariate polynomial interpolation: indexing the coefficients. Adv. Comput. Math. 12, 289–301 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. D. Reidel Publishing Company, Dordrecht (1985)

    Chapter  Google Scholar 

  6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Undergraduate Texts in Mathematics, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  7. Czekansky, J., Sauer, T.: The multivariate Horner scheme revisited. BIT Numer. Math. 55, 1043–1056 (2015). https://doi.org/10.1007/s10543-014-0533-x

    Article  MathSciNet  MATH  Google Scholar 

  8. Decker, W., Greuel, G.M., Pfister, G.: Primary decomposition: Algorithms and comparisons. In: Matzaat, B.H., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory. Springer, Berlin (1999)

    Google Scholar 

  9. Demmel, J.W., Grigori, L., Gu, M., Xiang, H.: Communication avoiding rank revealing QR factorization with column pivoting. SIAM J. Matrix Anal. Appl. 36, 55–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Foster, L.V., Liu, X.: Comparison of rank revealing algorithms applied to matrices with well defined numerical rank (2006) (Preprint unpublished)

  11. Golub, G., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  12. Gröbner, W.: Über das Macaulaysche inverse System und dessen Bedeutung für die Theorie der linearen Differentialgleichungen mit konstanten Koeffizienten. Abh. Math. Sem. Hamburg 12, 127–132 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, P.: Rank-deficient and discrete ill-posed problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  14. Hashemi, A., Javanbakht, M.: Computing H-bases via minimal bases for syzygy modules (2017) (Submitted for publication)

  15. Heldt, D., Kreuzer, M., Pokutta, S., Poulisse, H.: Approximate computation of zero-dimensional polynomial ideals. J. Symb. Comput. 44, 1566–1591 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  17. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  18. Lazard, D.: Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL. Springer, Berlin (1983)

    Google Scholar 

  19. Li, T.Y., Zeng, Z.: A rank-revealing method with updating, downdating, and applications. SIAM J. Matrix Anal. Appl. 26, 918–946 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Macaulay, F.S.: The Algebraic Theory of Modular Systems. No. 19 in Cambridge Tracts in Math. and Math. Physics. Cambridge University Press (1916)

  21. Möller, H.M., Sauer, T.: H-bases for polynomial interpolation and system solving. Adv. Comput. Math. 12(4), 335–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Möller, H.M., Sauer, T.: H-bases II: Applications to numerical problems. In: Cohen, A., Rabut, C., Schumaker, L.L. (eds.) Curve and Surface fitting: Saint-Malo 1999, pp. 333–342. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  23. Möller, H.M., Tenberg, R.: Multivariate polynomial system solving using intersections of eigenspaces. J. Symb. Comput. 32, 513–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peeva, I.: Graded Syzygies. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  25. Sauer, T.: Gröbner bases, H-bases and interpolation. Trans. Am. Math. Soc. 353, 2293–2308 (2001)

    Article  MATH  Google Scholar 

  26. Sauer, T.: Approximate varieties, approximate ideals and dimension reduction. Numer. Algorithms 45, 295–313 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sauer, T.: Prony’s method in several variables. Numer. Math. 136, 411–438 (2017). https://doi.org/10.1007/s00211-016-0844-8; ArXiv:1602.02352

  28. Schreyer, F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrassschen Divisionssatz. Diplomarbeit, University of Hamburg (1980)

  29. Stetter, H.J.: Numerical Polynomial Algebra. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was performed during the first authors stay at the University of Passau. We are grateful for the support provided by both institutions. In addition, we thank the referees for their careful reading and their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Sauer.

Additional information

Communicated by Daniel Kressner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javanbakht, M., Sauer, T. Numerical computation of H-bases. Bit Numer Math 59, 417–442 (2019). https://doi.org/10.1007/s10543-018-0733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0733-x

Keywords

Mathematics Subject Classification

Navigation