Skip to main content
Log in

Razumikhin-type technique on stability of exact and numerical solutions for the nonlinear stochastic pantograph differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish Razumikhin-type theorems on \(\alpha \)th moment polynomial stability of exact solution for the stochastic pantograph differential equations, which improves the existing stochastic Razumikhin-type theorems. By using discrete Razumikhin-type technique, we construct conditions for the stability of general numerical scheme of the stochastic pantograph differential equations (SPDEs). The stabilities mainly conclude the global \(\alpha \)th moment asymptotically stability and \(\alpha \)th moment polynomial stability. Using the conditions constructed for the stability of the numerical solutions, we discuss the stability of two special numerical methods, namely the Euler–Maruyama method and the backward Euler–Maruyama method. Finally, an example is given to illustrate the consistence with the theoretical results on \(\alpha \)th moment polynomial stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Buckwar, E., Horváth-Bokor, R., Winkler, R.: Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations. BIT Numer. Math. 46(2), 261–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fan, Z., Song, M., Liu, M.: The \(\alpha \)th moment stability for the stochastic pantograph equation. J. Comput. Appl. Math. 233(2), 109–120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo, P., Li, C.: Almost sure exponential stability of numerical solutions for the stochastic pantograph differential equations. J. Math. Anal. Appl. 460, 411–424 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, P., Li, C.: Almost sure stability with general decay rate of exact and numerical solutions for stochastic pantograph differential equations. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-018-0531-1

    Google Scholar 

  5. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  6. Hu, L., Mao, X., Shen, Y.: Stability and boundedness of nonlinear hybrid stochastic differential delay equations. Syst. Control Lett. 62(2), 178–187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Janković, S., Randjelović, J., Jovanović, M.: Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations. J. Math. Anal. Appl. 355(2), 811–820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional Differential Equations. Academic press, London (1986)

    Google Scholar 

  9. Liu, B., Marquez, H.J.: Razumikhin-type stability theorems for discrete delay systems. Automatica 43(7), 1219–1225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mao, X.: Razumikhin-type theorems on exponential stability of stochastic functional differential equations. Stoch. Process. Their Appl. 65(2), 233–250 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mao, X.: Razumikhin-type theorems on exponential stability of neutral stochastic differential equations. SIAM J. Math. Anal. 28(2), 389–401 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (2007)

    MATH  Google Scholar 

  13. Mao, X., Lam, J., Xu, S.: Razumikhin method and exponential stability of hybrid stochastic delay interval systems. J. Math. Anal. Appl. 314(1), 45–66 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Milošević, M.: Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler–Maruyama approximation. Appl. Math. Comput. 237, 672–685 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Pavlović, G., Janković, S.: Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay. J. Comput. Appl. Math. 236(7), 1679–1690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, S., Zhang, Y.: Razumikhin-type theorems on \(p\)th moment exponential stability of impulsive stochastic delay differential equations. IEEE Trans. Automat. Contr. 55(8), 1917–1922 (2010)

    Article  MATH  Google Scholar 

  17. Razumikhin, B.S.: On the stability of systems with a delay. Prikl. Mat. Mekh 20(4), 500–512 (1956)

    MathSciNet  Google Scholar 

  18. Shardlow, T., Taylor, P.: On the pathwise approximation of stochastic differential equations. BIT Numer. Math. 56(3), 1101–1129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, T., Luo, X., Li, W.: Razumikhin-type approach on state feedback of stochastic high-order nonlinear systems with time-varying delay. Int. J. Robust Nonlinear Control (2017)

  20. Wang, X., Gan, S., Wang, D.: A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise. BIT Numer. Math. 52(3), 741–772 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, F., Hu, S.: Razumikhin-type theorems on general decay stability and robustness for stochastic functional differential equations. Int. J. Robust Nonlinear Control 22(7), 763–777 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, F., Hu, S., Mao, X.: Razumikhin-type theorem for neutral stochastic functional differential equations with unbounded delay. Acta Mathematica Scientia 31(4), 1245–1258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, F., Mao, X., Kloeden, P.E.: Discrete Razumikhin-type technique and stability of the Euler–Maruyama method to stochastic functional differential equations. Discrete Contin. Dyn. Syst. Ser. A 33(2), 885–903 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, F., Mao, X., Szpruch, L.: Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numer. Math. 115(4), 681–697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Z., Zhu, E., Xu, Y., Tan, Y.: Razumikhin-type theorems on exponential stability of stochastic functional differential equations with infinite delay. Acta Applicandae Mathematicae 111(2), 219–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, H., Xiao, Y., Guo, F.: Convergence and stability of a numerical method for nonlinear stochastic pantograph equations. J. Franklin Inst. 351(6), 3089–3103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, S., Chen, M.: A new Razumikhin theorem for delay difference equations. Comput. Math. Appl. 36(10–12), 405–412 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Jun Li.

Additional information

Communicated by Elisabeth Larsson.

This work was supported by the National Natural Science Foundation of China (Nos. 11471066, 11290143), Fundamental Research of Civil Aircraft (No. MJ-F-2012-04), and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Li, CJ. Razumikhin-type technique on stability of exact and numerical solutions for the nonlinear stochastic pantograph differential equations. Bit Numer Math 59, 77–96 (2019). https://doi.org/10.1007/s10543-018-0723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0723-z

Keywords

Mathematics Subject Classification

Navigation