Skip to main content
Log in

Linear differential operators on bivariate spline spaces and spline vector fields

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We consider the application of standard differentiation operators to spline spaces and spline vector fields defined on triangulations in the plane. In particular, we explore the use of Bernstein–Bézier techniques for answering questions such as: What are the images or the kernels, and their dimensions, of partial derivative, gradient, divergence, curl, or Laplace, operators. We also describe a particular continuous piecewise quadratic finite element whose nodal parameters are function and divergence (or curl) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alfeld, P.: MDS software (2015). http://www.math.utah.edu/~pa

  2. Arnold, D., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Q. Numer. Anal. Theory Comput. 21, 337–344 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, D., Awanou, G., Qiu, W.: Mixed finite elements for elasticity on quadrilateral meshes. arXiv:1306.6821

  4. Arnold, D., Falk, R., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Eng. 198, 1660–1672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billera, L.J., Haas, R.: The dimension and bases of divergence-free splines: a homological approach. Approx. Theory Appl. 7, 91–99 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Clough, R., Tocher, J.: Finite Element Stiffness Matrices, for analysis of plates in bending. In: Proceedings of Conference on Matrix Methods in Structural Analysis, Wright-Patterson Air Force Base (1965)

  7. Lai, M.-J., Schumaker, L.L.: Spline functions on triangulations. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  8. Morgan, J., Scott, R.: The dimension of the space of \(C^1\) piecewise polynomials, Research Report UH/MD-78, University of Houston, June (1990)

  9. Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3, 316–325 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Scott, L.R., Vogelius, M.: Conforming finite element methods for incompressible and nearly incompressible continua. Lect. Appl. Math. 22, 221–244 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Math. Model. Numer. Anal. 19, 111–143 (1985)

    MathSciNet  MATH  Google Scholar 

  12. Sorokina, T.: Intrinsic supersmoothness of multivariate splines. Numer. Math. 116, 421–434 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sorokina, T.: Redundancy of smoothness conditions and supersmoothness of bivariate splines. IMA J. Numer. Anal. 34(4), 1701–1714 (2014)

  14. Strang, G.: Piecewise polynomials and the finite element method. Bull. Am. Math. Soc 79, 1128–1137 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, S.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74, 543–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Noel Walkington and Alexei Kolesnikov for useful discussions, and the Towson University Fisher Foundation for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Sorokina.

Additional information

Communicated by Tom Lyche.

T. Sorokina is partially supported by the Simons Foundation Collaboration Grant for Mathematicians.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfeld, P., Sorokina, T. Linear differential operators on bivariate spline spaces and spline vector fields. Bit Numer Math 56, 15–32 (2016). https://doi.org/10.1007/s10543-015-0557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0557-x

Keywords

Mathematics Subject Classification

Navigation