Skip to main content
Log in

Exponential Krylov peer integrators

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the application of exponential peer methods to stiff ODEs of high dimension. Conditions for stiff order \(p\) for variable step size are derived, and corresponding methods are given. The methods are combined with Krylov approximations for the \(\varphi \)-functions times a vector using the code phipm of Niesen and Wright. The structure of the peer methods is exploited to reduce the Krylov dimensions. Numerical tests with step size control of three exponential peer methods and comparisons with the exponential W-method exp4 for semidiscretized problems show the efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Mohy, A., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berland, H., Skaflestad, B., Wright, W.: Expint—a matlab package for exponential integrators. ACM Trans. Math. Softw. 33(1) 4, 1–7 (2007)

  3. Certaine, J.: The solution of ordinary differential equations with large time constants. In: Mathematical Methods for Digital Computers, pp. 128–132. Wiley, New York (1960)

  4. El Azab, T.: Exponential peer methods. Dissertation, University of Halle (2011)

  5. El Azab, T., Weiner, R.: Exponential peer methods with variable step sizes. Reports of the Inst. of Mathematics, University of Halle, No. 6 (2010)

  6. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  7. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  8. Hochbruck, M., Lubich, Ch., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semi-linear parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  12. Moler, C., Van Loan, Ch.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Niesen, J., Wright, W.: A Krylov subspace algorithm for evaluating the \(\varphi \)-functions appearing in exponential integrators. ACM TOMS 38(3), Article 22 (2012)

  14. Ostermann, A., Thalhammer, M., Wright, W.M.: A class of explicit exponential general linear methods. BIT Numer. Math. 46, 409–431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996)

    MATH  Google Scholar 

  16. Schmitt, B.A., Weiner, R., Erdmann, K.: Implicit parallel peer methods for stiff initial value problems. APNUM 53, 457–470 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Schmitt, B.A., Weiner, R.: Parallel two-step w-methods with peer variables. SIAM J. Numer. Anal. 42, 265–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sidje, R.: EXPOKIT: software package for computing matrix exponentials. ACM Trans. Math. Softw. 24, 130–156 (1998)

    Article  MATH  Google Scholar 

  19. Sommeijer, B.P., Shampine, L.F., Verwer, J.G.: RKC: an explicit solver for parabolic PDEs. J. Comput. Appl. Math. 88, 315–326 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tokman, M., Loffeld, J., Tranquilli, P.: New adaptive exponential propagation iterative methods of Runge–Kutta type. SIAM J. Sci. Comput. 34, A2650–A2669 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weiner, R., Biermann, K., Schmitt, B.A., Podhaisky, H.: Explicit two-step peer methods. Comput. Math. Appl. 55, 609–619 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Weiner, R., Schmitt, B.A., Podhaisky, H.: ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs. Appl. Numer. Math. 25, 303–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weiner, R., Schmitt, B.A., Podhaisky, H., Jebens, S.: Superconvergent explicit two-step peer methods. Journal of Computational and Applied Mathematics 223, 753–764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weiner, R., El-Azab, Tamer: Exponential peer methods. Appl. Numer. Math. 62, 1335–1348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to anonymous referees for their valuable remarks and comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Weiner.

Additional information

Communicated by Mechthild Thalhammer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiner, R., Bruder, J. Exponential Krylov peer integrators. Bit Numer Math 56, 375–393 (2016). https://doi.org/10.1007/s10543-015-0553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0553-1

Keywords

Mathematics Subject Classification

Navigation