Skip to main content
Log in

Estimating the error of Gaussian quadratures with simple and multiple nodes by using their extensions with multiple nodes

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The estimation of the error in a quadrature formula is an important problem. A simple and effective procedure for estimating the error of Gaussian quadrature formulas using their extensions with multiple nodes will be presented. Our method works for estimating the error of any interpolatory quadrature formula with simple or multiple nodes. We concentrate the most of our attention to the estimation of the error of standard Gauss quadratures, as the most known and popular ones. In that sense we offer an adequate alternative to Gauss–Kronrod quadratures, which have been intensively investigated in the last five decades, both from the theoretical and computational point of view. We found and a few cases of optimal, i.e., Kronrod extensions with multiple nodes for some Gauss quadrature formulas; we are not aware of any results of this kind in the mathematical literature. Numerical results are presented, in order to demonstrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, S.: Sur les polynomes orthogonaux relatifs à un segment fini. J. Math. Pures Appl. 9, 127–177 (1930)

    MATH  Google Scholar 

  2. Bojanov, B., Petrova, G.: Quadrature formulae for Fourier coefficients. J. Comput. Appl. Math. 231, 378–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss–Kronrod rules. Math. Comput. 69, 1035–1052 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvetti, D., Reichel, L.: Symmetric Gauss–Lobatto and modified anti-Gauss rules. BIT 43, 541–554 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakalov, L.: Über eine allgemeine Quadraturformel. C. R. Acad. Bulg. Sci. 1, 9–12 (1948)

    MATH  Google Scholar 

  6. Chakalov, L.: General quadrature formulae of Gaussian type. Bulg. Akad. Nauk. Izv. Mat. Inst. 1, 67–84 (1954) (Bulgarian)

  7. Cvetković, A.S., Milovanović, G.V.: The Mathematica package “Orthogonal Polynomials”. Facta Univ. Ser. Math. Inf. 19, 17–36 (2004)

    MATH  Google Scholar 

  8. Cvetković, A.S., Spalević, M.M.: Estimating the error of Gauss–Turán quadrature formulas using their extensions. Electron. Trans. Numer. Anal. 41, 1–12 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Ehrich, S.: On stratified extensions of Gauss–Laguerre and Gaus-Hermite quadrature formulas. J. Comput. Appl. Math. 140, 291–299 (2002)

  10. Engels, H.: Numerical Quadrature and Cubature. Academic Press, London (1980)

    MATH  Google Scholar 

  11. Gauss, C.F.: Methodus nova integralium valores per approximationem inveniendi. Comment. Soc. Reg. Sci. Gött. Recent. 3, 163–196 (1814) (Also in Werke III)

  12. Gautschi, W.: Gauss–Kronrod quadrature—a survey. In: Milovanović, G.V. (ed.) Numerical Methods and Approximation Theory III, Niš, 1987. Faculty of Electronic Engineering, pp. 39–66. University Niš, Niš (1988)

  13. Gautschi, W.: On the remainder term for analytic functions of Gauss–Lobatto and Gauss–Radau quadratures. Rocky Mt. J. Math. 21, 209–226 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  15. Gautschi, W.: OPQ: A MATLAB suite of programs for generating orthogonal polynomials and related quadrature rules. https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html

  16. Gautschi, W.: A historical note on Gauss–Kronrod quadrature. Numer. Math. 100, 483–484 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gautschi, W.: High-precision Gauss–Turán quadrature rules for Laguerre and Hermite weight functions. Numer. Algorithm 67(1), 59–72 (2014)

  18. Gautschi, W., Milovanović, G.V.: \(S\)-orthogonality and construction of Gauss–Turán-type quadrature formulae. J. Comput. Appl. Math. 86, 205–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gautschi, W., Notaris, S.E.: Gauss–Kronrod quadrature formulae for weight function of Bernstein–Szegö type. J. Comput. Appl. Math. 25, 199–224 (1989). erratum in J. Comput. Appl. Math. 27, 429 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghizzetti, A., Ossicini, A.: Quadrature Formulae. Akademie-Verlag, Berlin (1970)

    Book  MATH  Google Scholar 

  21. Ghizzetti, A., Ossicini, A.: Sull’ esistenza e unicitá delle formule di quadratura gaussiane. Rend. Mat. 8, 1–15 (1975)

    MathSciNet  MATH  Google Scholar 

  22. Golub, G.H., Kautsky, J.: Calculation of Gauss quadratures with multiple free and fixed knots. Numer. Math. 41, 147–163 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23, 221–230 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gori, L., Micchelli, C.A.: On weight functions which admit explicit Gauss–Turán quadrature formulas. Math. Comput. 65, 1567–1581 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kahaner, D.K., Monegato, G.: Nonexistence of extended Gauss–Laguerre and Gauss-Hermite quadrature rules with positive weights. Z. Angew. Math. Phys. 29, 983–986 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kronrod, A.S.: Integration with control of accuracy. Soviet Phys. Dokl. 9, 17–19 (1964)

    MathSciNet  MATH  Google Scholar 

  27. Kroó, A., Peherstorfer, F.: Asymptotic representation of \(L_p\)-minimal polynomials, \(1<p <\infty \). Constr. Approx. 25, 29–39 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comput. 65, 739–747 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Laurie, D.P.: Calculation of Gauss–Kronrod quadrature rules. Math. Comput. 66, 1133–1145 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, S.: Kronrod extension of Turán formula. Stud. Sci. Math. Hung. 29, 71–83 (1994)

    MATH  Google Scholar 

  31. Micchelli, C.A., Sharma, A.: On a problem of Turán: multiple node Gaussian quadrature. Rend. Mat. 3, 529–552 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Milovanović, G.V.: Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation. J. Comput. Appl. Math. 127, 267–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Milovanović, G.V., Cvetković, A.S.: Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type. Math. Balk. 26, 169–184 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Milovanović, G.V., Spalević, M.M.: Kronrod extensions with multiple nodes of quadrature formulas for Fourier coefficients. Math. Comput. 83, 1207–1231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Milovanović, G.V., Spalević, M.M., Cvetković, A.S.: Calculation of Gaussian type quadratures with multiple nodes. Math. Comput. Model. 39, 325–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Monegato, G.: Stieltjes polynomials and related quadrature rules. SIAM Rev. 24, 137–158 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Monegato, G.: An overview of the computational aspects of Kronrod quadrature rules. Numer. Algorithm 26, 173–196 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ossicini, A., Rosati, F.: Funzioni caratteristiche nelle formule di quadratura gaussiane con nodi multipli. Boll. Un. Mat. Ital. 4(11), 224–237 (1975)

    MathSciNet  MATH  Google Scholar 

  39. Peherstorfer, F.: Gauss–Turán quadrature formulas: asymptotics of weights. SIAM J. Numer. Anal. 47, 2638–2659 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Peherstorfer, F., Petras, K.: Ultraspherical Gauss–Kronrod quadrature is not possible for \(\lambda {\>}3\). SIAM J. Numer. Anal. 37, 927–948 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Peherstorfer, F., Petras, K.: Stieltjes polynomials and Gauss–Kronrod quadrature for Jacobi weight functions. Numer. Math. 95, 689–706 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pejčev, A.V., Spalević, M.M.: Error bounds of Micchelli–Sharma quadrature formula for analytic functions. J. Comput. Appl. Math. 259, 48–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Popoviciu, T.: Sur une généralisation de la formule d’itégration numérique de Gauss. Acad. R. P. Rom. Fil. Iaşi Stud. Cerc. Şti. 6, 29–57 (1955). (Romanian)

    MathSciNet  MATH  Google Scholar 

  44. Shi, Y.G.: Generalized Gaussian Kronrod–Turán quadrature formulas. Acta Sci. Math. (Szeged) 62, 175–185 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Shi, Y.G.: Convergence of Gaussian quadrature formulas. J. Approx. Theory 105, 279–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shi, Y.G.: Christoffel type functions for \(m\)-orthogonal polynomials. J. Approx. Theory 137, 57–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shi, Y.G., Xu, G.: Construction of \(\sigma \)-orthogonal polynomials and Gaussian quadrature formulas. Adv. Comput. Math. 27, 79–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Spalević, M.M.: On generalized averaged Gaussian formulas. Math. Comput. 76, 1483–1492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Spalević, M.M.: A note on generalized averaged Gaussian formulas. Numer. Algorithm 46, 253–264 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Spalević, M.M.: Error bounds and estimates for Gauss–Turán quadrature formulae of analytic functions. SIAM J. Numer. Anal. 52, 443–467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Szegő, G.: Orthogonal Polynomials. In: Amer. Math. Soc. Colloq. Publ., vol. 23, 4th edn. American Mathematical Society, Providence (1975)

  52. Turán, P.: On the theory of the mechanical quadrature. Acta Sci. Math. (Szeged) 12, 30–37 (1950)

    MathSciNet  MATH  Google Scholar 

  53. Zhou, C.: Convergence of Gaussian quadrature formulas on infinite intervals. J. Approx. Theory 123, 280–294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the referees for the careful reading of the manuscript and their suggestions which have improved the paper. This work was supported in part by the Serbian Ministry of Education, Science and Technological Development [Research Projects: “Methods of numerical and nonlinear analysis with applications” (#174002) and “Approximation of integral and differential operators and applications” (#174015)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Spalević.

Additional information

Communicated by Lothar Reichel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spalević, M.M., Cvetković, A.S. Estimating the error of Gaussian quadratures with simple and multiple nodes by using their extensions with multiple nodes. Bit Numer Math 56, 357–374 (2016). https://doi.org/10.1007/s10543-015-0551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0551-3

Keywords

Mathematics Subject Classification

Navigation