Skip to main content
Log in

Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Since its formulation in the late 1940s, the Feynman–Kac formula has proven to be an effective tool for both theoretical reformulations and practical simulations of differential equations. The link it establishes between such equations and stochastic processes can be exploited to develop Monte Carlo sampling methods that are effective, especially in high dimensions. There exist many techniques of improving standard Monte Carlo sampling methods, a relatively new development being the so-called Multilevel Monte Carlo method. This paper investigates the applicability of multilevel ideas to the stochastic representation of partial differential equations by the Feynman–Kac formula, using the Walk on Spheres algorithm to generate the required random paths. We focus on the Laplace equation, the simplest elliptic PDE, while mentioning some extension possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adelmann, A., Arbenz, P., Ineichen, Y.: A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations. J. Comput. Phys. 229(12), 4554–4566 (2010)

    Article  MATH  Google Scholar 

  2. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  4. Binder, I., Braverman, M.: The complexity of simulating Brownian motion. In: Proceedings of the 20th annual ACM-SIAM symposium on discrete algorithms, pp. 58–67 (2009)

  5. Bruijn, N.: Asymptotic Methods in Analysis. Bibliotheca mathematica. Dover Publications, Mineola (1970)

    Google Scholar 

  6. Buchmann, F.M., Petersen, W.P.: Solving Dirichlet problems numerically using the Feynman–Kac representation. BIT Numer. Math. 43, 519–540 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, J.: Stochastic Processes. http://www.stat.yale.edu/jtc5/251/stochastic-processes . Lecture notes (2007)

  8. Doob, J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Classics in Mathematics Series. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  9. Gantner, R. N.: Computing the Feynman–Kac formula efficiently with multilevel Monte Carlo. Master thesis, Computer Science Department, ETH Zurich (2013)

  10. Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  11. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hilber, N., Reichmann, O., Schwab, C., Winter, C.: Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pricing. Springer. Springer finance, Berlin (2013)

    Book  MATH  Google Scholar 

  13. Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65(1), 1–13 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mascagni, M., Hwang, C.O.: \(\varepsilon \)-Shell error analysis for “Walk on Spheres” algorithms. Math. Comput. Simul 63(2), 93–104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Muller, M.E.: Some continuous Monte Carlo methods for the Dirichlet problem. Ann. Math. Stat. 27(3), 569–589 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Müller, F., Jenny, P., Meyer, D.W.: Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media. J. Comput. Phys. 250, 685–702 (2013)

    Article  MathSciNet  Google Scholar 

  17. Nevanlinna, R.H.: Analytic Functions. Princeton Mathematical Series. Princeton University Press, Princeton (1960)

    Google Scholar 

  18. Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  19. Wendel, J.G.: Hitting spheres with Brownian motion. Ann. Probab. 8(1), 164–169 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Pauli.

Additional information

Communicated by Desmond Higham.

The work of Stefan Pauli has been funded by the ETH interdisciplinary research Grant CH1-03 10-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauli, S., Gantner, R.N., Arbenz, P. et al. Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation. Bit Numer Math 55, 1125–1143 (2015). https://doi.org/10.1007/s10543-014-0543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0543-8

Keywords

Mathematics Subject Classification

Navigation