Skip to main content
Log in

Tikhonov regularization via flexible Arnoldi reduction

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Flexible GMRES, introduced by Saad, is a generalization of the standard GMRES method for the solution of large linear systems of equations. It is based on the flexible Arnoldi process for reducing a large square matrix to a small matrix. We describe how the flexible Arnoldi process can be applied to implement one-parameter and multi-parameter Tikhonov regularization of linear discrete ill-posed problems. The method proposed is well suited for large-scale problems. Moreover, computed examples show that our method can give approximate solutions of higher accuracy than available direct methods for small-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baart, M.L.: The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baglama, J., Reichel, L.: Decomposition methods for large linear discrete ill-posed problems. J. Comput. Appl. Math. 198, 332–342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouhamidi, A., Jbilou, K.: A Sylvester–Tikhonov regularization method for image restoration. J. Comput. Appl. Math. 206, 86–98 (2007)

  4. Brezinski, C., Redivo-Zaglia, M., Rodriguez, G., Seatzu, S.: Multi-parameter regularization techniques for ill-conditioned linear systems. Numer. Math. 94, 203–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT Numer. Math. 43, 263–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.F., Jackson, K.R.: Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms. SIAM J. Sci. Stat. Comput. 5, 533–542 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daniel, J.W., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and stable algorithms for updating the Gram–Schmidt QR factorization. Math. Comput. 30, 772–795 (1976)

    MathSciNet  MATH  Google Scholar 

  8. Donatelli, M., Neuman, A., Reichel, L.: Square regularization matrices for large linear discrete ill-posed problems. Numer. Linear Algebra Appl. 19, 896–913 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donatelli, M., Reichel, L.: Square smoothing regularization matrices with accurate boundary conditions. J. Comput. Appl. Math. 272, 334–349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dykes, L., Reichel, L.: On the reduction of Tikhonov minimization problems and the construction of regularization matrices. Numer. Algorithms 60, 683–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eldén, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT Numer. Math. 17, 134–145 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eldén, L.: A weighted pseudoinverse, generalized singular values, and constrained least squares problems. BIT Numer. Math. 22, 487–501 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  14. Gazzola, S.: Regularization techniques based on Krylov subspace methods for ill-posed linear systems, Ph.D. thesis, Department of Mathematics, University of Padova, Padova, Italy, March 2014

  15. Gazzola, S., Novati, P.: Muli-parameter Arnoldi–Tikhonov methods. Electron. Trans. Numer. Anal. 40, 452–475 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  17. Handlovicová, A., Mikula, K., Sgallari, F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93, 675–695 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  19. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hearn, T.A., Reichel, L.: Application of denoising methods to regularization of ill-posed problems. Numer. Algorithms 66, 761–777 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hnětynková, I., Plešinger, M., Strakoš, Z.: The regularizing effect of the Golub–Kahan iterative bidiagonalization and revealing the noise level in the data. BIT Numer. Math. 49, 669–696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochstenbach, M.E., Reichel, L.: An iterative method for Tikhonov regularization with a general linear regularization operator. J. Integral Equ. Appl. 22, 463–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hochstenbach, M.E., Reichel, L., Yu, X.: A Golub–Kahan-type reduction method for matrix pairs (submitted for publication)

  24. Kilmer, M.E., Hansen, P.C., Español, M.I.: A projection-based approach to general-form Tikhonov regularization. SIAM J. Sci. Comput. 29, 315–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Li, R.-C., Ye, Q.: A Krylov subspace method for quadratic matrix polynomials with application to constrained least squares problems. SIAM J. Matrix Anal. Appl. 25, 405–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, S., Pereverzyev, S.V.: Multi-parameter regularization and its numerical realization. Numer. Math. 118, 1–31 (2011)

    Article  MathSciNet  Google Scholar 

  28. Morigi, S., Reichel, L., Sgallari, F.: Orthogonal projection regularization operators. Numer. Algorithms 44, 99–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morikuni, K., Reichel, L., Hayami, K.: FGMRES for linear discrete ill-posed problems. Appl. Numer. Math. 75, 175–187 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Neuman, A., Reichel, L., Sadok, H.: Implementations of range restricted iterative methods for linear discrete ill-posed problems. Linear Algebra Appl. 436, 3974–3990 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  32. Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithms 63, 65–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reichel, L., Sgallari, F., Ye, Q.: Tikhonov regularization based on generalized Krylov subspace methods. Appl. Numer. Math. 62, 1215–1228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reichel, L., Ye, Q.: Simple square smoothing regularization operators. Electron. Trans. Numer. Anal. 33, 63–83 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Weickert, J., Romeny, B.M.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)

    Article  Google Scholar 

  37. Yu, X.: Generalized Krylov subspace methods with applications, Ph.D. thesis, Department of Mathematics, Kent State University, May 2014

  38. Zha, H.: Computing the generalized singular values/vectors of large sparse or structured matrix pairs. Numer. Math. 72, 391–417 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for comments that lead to improvements of the presentation. This research is supported in part by NSF Grant DMS-1115385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Additional information

Communicated by Rosemary Renaut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichel, L., Yu, X. Tikhonov regularization via flexible Arnoldi reduction. Bit Numer Math 55, 1145–1168 (2015). https://doi.org/10.1007/s10543-014-0542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0542-9

Keywords

Mathematics Subject Classification

Navigation