Skip to main content
Log in

A GCV based Arnoldi-Tikhonov regularization method

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

For the solution of linear discrete ill-posed problems, in this paper we consider the Arnoldi-Tikhonov method coupled with the Generalized Cross Validation for the computation of the regularization parameter at each iteration. We study the convergence behavior of the Arnoldi method and its properties for the approximation of the (generalized) singular values, under the hypothesis that Picard condition is satisfied. Numerical experiments on classical test problems and on image restoration are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauer, F., Lukas, M.: Comparing parameter choice methods for regularization of ill-posed problems. Math. Comput. Simul. 81(9), 1795–1841 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Björck, Å.: A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations. BIT Numer. Math. 28, 659–670 (1988)

    Article  MATH  Google Scholar 

  3. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 123, 423–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, J., Nagy, J.G., O’Leary, D.P.: A weighted-GCV method for Lanczos-hybrid regularization. Electron. Trans. Numer. Anal. 28, 149–167 (2007/08)

    MathSciNet  Google Scholar 

  5. Donatelli, M., Neuman, A., Reichel, L.: Square regularization matrices for large linear discrete ill-posed problems. Numer. Linear Algebra Appl. 19, 896–913 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Franklin, J.N.: Minimum principles for ill-posed problems. SIAM J. Math. Anal. 9(4), 638–650 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gazzola, S., Novati, P.: Automatic parameter setting for Arnoldi-Tikhonov methods. J. Comput. Appl. Math. 256, 180–195 (2014)

    Article  MathSciNet  Google Scholar 

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  9. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Golub, G.H., Luk, F.T., Overton, M.L.: A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix. ACM Trans. Math. Softw. 7(2), 149–169 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hämarik, U., Palm, R., Raus, T.: A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level. J. Comput. Appl. Math. 236(8), 2146–2157 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hanke, M.: On Lanczos based methods for the regularization of discrete ill-posed problems. BIT Numer. Math. 41, 1008–1018 (2001)

    Article  MathSciNet  Google Scholar 

  13. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MATH  MathSciNet  Google Scholar 

  14. Hansen, P.C.: The discrete Picard condition for discrete ill-posed problems. BIT Numer. Math. 30, 658–672 (1990)

    Article  MATH  Google Scholar 

  15. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  16. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hochstenbach, M., Reichel, L.: An iterative method for Tikhonov regularization with a general linear regularization operator. J. Integral Equ. Appl. 22, 463–480 (2010)

    Article  MathSciNet  Google Scholar 

  18. Hochstenbach, M., McNinch, N., Reichel, L.: Discrete ill-posed least-squares problems with a solution norm constraint. Linear Algebra Appl. 436, 3801–3818 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hofmann, B.: Regularization for Applied Inverse and Ill-Posed Problems. Teubner, Stuttgart (1986)

    Book  MATH  Google Scholar 

  20. Kilmer, M.E., O’Leary, D.P.: Choosing regularization parameters in iterative methods for ill-posed problems. SIAM J. Matrix Anal. Appl. 22, 1204–1221 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kilmer, M.E., Hansen, P.C., Español, M.I.: A projection-based approach to general-form Tikhonov regularization. SIAM J. Sci. Comput. 29(1), 315–330 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)

    MATH  MathSciNet  Google Scholar 

  23. Kohn, R., Ansley, C.F., Tharm, D.: The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters. J. Am. Stat. Assoc. 86, 1042–1050 (1991)

    Article  MathSciNet  Google Scholar 

  24. Lewis, B., Reichel, L.: Arnoldi-Tikhonov regularization methods. J. Comput. Appl. Math. 226, 92–102 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lukas, M.A.: Robust generalized cross-validation for choosing the regularization parameter. Inverse Probl. 22, 1883–1902 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Moret, I.: A note on the superlinear convergence of GMRES. SIAM J. Numer. Anal. 34(2), 513–516 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nevanlinna, O.: Convergence of Iterations for Linear Equations. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  28. Novati, P., Russo, M.R.: Adaptive Arnoldi-Tikhonov regularization for image restoration, Numer. Algorithms (2013, in press). doi:10.1007/s11075-013-9712-0

  29. O’Leary, D.P.: Near-optimal parameters for Tikhonov and other regularization methods. SIAM J. Sci. Comput. 23(4), 1161–1171 (2011)

    Article  MathSciNet  Google Scholar 

  30. O’Leary, D.P., Simmons, J.A.: A bidiagonalization-regularization procedure for large-scale discretizations of ill-posed problems. SIAM J. Sci. Stat. Comput. 2, 474–489 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  31. Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithms 63, 65–87 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, Manchester, Halsted Press, New York (1992)

  33. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  34. Saad, Y., Wu, K.: DQGMRES: a direct quasi-minimal residual algorithm based on incomplete orthogonalization. Numer. Linear Algebra Appl. 3, 329–343 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Thompson, A.M., Kay, J.W., Titterington, D.M.: A cautionary note about crossvalidatory choice. J. Stat. Comput. Simul. 33, 199–216 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  36. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  37. Wahba, G.: A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Stat. 13, 1378–1402 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Novati.

Additional information

Communicated by Michiel Hochstenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novati, P., Russo, M.R. A GCV based Arnoldi-Tikhonov regularization method. Bit Numer Math 54, 501–521 (2014). https://doi.org/10.1007/s10543-013-0447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0447-z

Keywords

Mathematics Subject Classification (2010)

Navigation