Skip to main content
Log in

On the approximation of high-dimensional differential equations in the hierarchical Tucker format

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The hierarchical Tucker format is a way to decompose a high-dimensional tensor recursively into sums of products of lower-dimensional tensors. The number of degrees of freedom in such a representation is typically many orders of magnitude lower than the number of entries of the original tensor. This makes the hierarchical Tucker format a promising approach to solve ordinary differential equations for high-dimensional tensors. In order to propagate the approximation in time, differential equations for the parameters of the hierarchical Tucker format are derived from the Dirac-Frenkel variational principle. We prove an error bound for the dynamical approximation in the hierarchical Tucker format by extending previous results of Koch and Lubich for the non-hierarchical Tucker format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31, 2029–2054 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computational Mathematics, vol. 42. Springer, Berlin (2012)

    MATH  Google Scholar 

  4. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15, 706–722 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Holtz, S., Rohwedder, T., Schneider, R.: On manifolds of tensors of fixed tt-rank. Numer. Math. 120(4), 701–731 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985), 1. publ. edition

    Book  MATH  Google Scholar 

  7. Koch, O., Lubich, C.: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29, 434–454 (2007)

    Article  MathSciNet  Google Scholar 

  8. Koch, O., Lubich, C.: Dynamical tensor approximation. SIAM J. Matrix Anal. Appl. 31, 2360–2375 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kressner, D., Tobler, C.: htucker—a Matlab toolbox for tensors in hierarchical Tucker format. Technical report, ETH, Zurich (2012)

  11. Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2008)

    Google Scholar 

  12. Lubich, C., Rohwedder, T., Schneider, R., Vandereycken, B.: Dynamical approximation by hierarchical Tucker and tensor-train tensors. SIAM J. Matrix Anal. Appl. 34, 470–494 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Manthe, U.: A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. J. Chem. Phys. 128, 164116 (2008)

    Article  Google Scholar 

  14. Uschmajew, A., Vandereycken, B.: The geometry of algorithms using hierarchical tensors. Linear Algebra Appl. 439, 133–166 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Vendrell, O., Meyer, H.-D.: Multilayer multi-configuration time-dependent Hartree method: implementation and applications to a Henon-Heiles Hamiltonian and to pyrazine. J. Chem. Phys. 134(4), 044135 (2011)

    Article  Google Scholar 

  16. Wang, H., Thoss, M.: Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119, 1289–1299 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their helpful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Jahnke.

Additional information

Communicated by Christian Lubich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, A., Jahnke, T. On the approximation of high-dimensional differential equations in the hierarchical Tucker format. Bit Numer Math 54, 305–341 (2014). https://doi.org/10.1007/s10543-013-0444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0444-2

Keywords

Mathematics Subject Classification (2010)

Navigation