Skip to main content
Log in

Convergence analysis of HSS-multigrid methods for second-order nonselfadjoint elliptic problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the multigrid methods using Hermitian/skew-Hermitian splitting (HSS) iteration as smoothers are investigated. These smoothers also include the modified additive and multiplicative smoothers which result from subspace decomposition. Without full elliptic regularity assumption, it is shown that the multigrid methods with these smoothers converge uniformly for second-order nonselfadjoint elliptic boundary value problems if the mesh size of the coarsest grid is sufficiently small (but independent of the number of the multigrid levels). Numerical results are reported to confirm the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, R.: Fourier analysis of a robust multigrid method for convection-diffusion equations. Numer. Math. 71, 365–397 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, Z.-Z.: Splitting iteration methods for non-Hermitian positive definite systems of linear equations. Hokkaido Math. J. 36, 801–814 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z.-Z.: Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl. 16, 447–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.-Z., Golub, G.H., Li, C.-K.: Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices. SIAM J. Sci. Comput. 28, 583–603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai, Z.-Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76, 287–298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Z.-Z., Golub, G.H., Ng, M.K.: On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl. 428, 413–440 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56, 297–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bank, R.E.: A comparison of two multilevel iterative methods for nonsymmetric and indefinite elliptic finite element equations. SIAM J. Numer. Anal. 18, 724–743 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comput. 36, 35–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26, 20–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bertaccini, D., Golub, G.H., Serra Capizzano, S., Tablino Possio, C.: Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation. Numer. Math. 99, 441–484 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including the V-cycle. SIAM J. Numer. Anal. 20, 967–975 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bramble, J.H., Pasciak, J.E.: The analysis of smoothers for multigrid algorithms. Math. Comput. 58, 467–488 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bramble, J.H., Pasciak, J.E.: New estimates for multilevel algorithms including the V-cycle. Math. Comput. 60, 447–471 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Bramble, J.H., Zhang, X.-J.: The analysis of multigrid methods. In: Handbook of Numerical Analysis VII, pp. 173–415. North-Holland, Amsterdam (2000)

    Google Scholar 

  20. Bramble, J.H., Pasciak, J.E., Xu, J.-C.: The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems. Math. Comput. 51, 389–414 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bramble, J.H., Kwak, D.Y., Pasciak, J.E.: Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31, 1746–1763 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  MATH  Google Scholar 

  23. Brenner, S.C.: Convergence of the multigrid V-cycle algorithms for second order boundary value problems without full elliptic regularity. Math. Comput. 71, 507–525 (2002)

    Article  MATH  Google Scholar 

  24. Byfut, A., Gedicke, J., Günther, D., Reininghaus, J., Wiedemann, S.: FFW Documentation. Humboldt University of Berlin, Germany (2007)

  25. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  26. De Zeeuw, P.M.: Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comput. Appl. Math. 33, 1–27 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Douglas, C.C.: Multigrid algorithms with applications to elliptic boundary value problems. SIAM J. Numer. Anal. 21, 236–254 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hackbusch, W.: Multigrid methods and applications. Springer, Berlin (1985)

    Book  Google Scholar 

  29. Hamilton, S., Benzi, M., Haber, E.: New multigrid smoothers for the Oseen problem. Numer. Linear Algebra Appl. 17, 557–576 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Maitre, J.F., Musy, F.: Multigrid methods: convergence theory in a variational framework. SIAM J. Numer. Anal. 21, 657–671 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mandel, J.: Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step. Appl. Math. Comput. 19, 201–216 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mandel, J., McCormick, S.F., Bank, R.E.: Variational multigrid theory. In: Multigrid methods. Frontiers in Applied Mathematics, pp. 131–177. SIAM, Philadelphia (1987)

    Chapter  Google Scholar 

  33. Russo, A., Tablino Possio, C.: Preconditioned Hermitian and skew-Hermitian splitting method for finite element approximations of convection-diffusion equations. SIAM J. Matrix Anal. Appl. 31, 997–1018 (2009)

    Article  MathSciNet  Google Scholar 

  34. Schatz, A.H., Wang, J.-P.: Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions. Math. Comput. 65, 19–27 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simoncini, V., Benzi, M.: Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems. SIAM J. Matrix Anal. Appl. 26, 377–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, J.-P.: Convergence analysis of multigrid algorithms for nonselfadjoint and indefinite elliptic problems. SIAM J. Numer. Anal. 30, 275–285 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wesseling, P.: An introduction to multigrid methods. Pure and Applied Mathematics. Chichester, New York (1992)

    MATH  Google Scholar 

  38. Xu, J.-C.: An introduction to multilevel methods. Wavelets, multilevel methods, and elliptic PDE’s. In: Numerical Mathematics and Scientific Computation, pp. 213–302. Oxford University Press, New York (1997)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their insightful and valuable suggestions, which greatly improved the original manuscript of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishun Li.

Additional information

Communicated by Jan Hesthaven.

Supported by the National Natural Science Foundation of China (Grant No. 10731060) and ZPNSFC (Grant No. LY12A01023).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Huang, Z. Convergence analysis of HSS-multigrid methods for second-order nonselfadjoint elliptic problems. Bit Numer Math 53, 987–1012 (2013). https://doi.org/10.1007/s10543-013-0433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0433-5

Keywords

Mathematics Subject Classification (2000)

Navigation