Skip to main content
Log in

Numerical integration based on trivariate C 2 quartic spline quasi-interpolants

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider the space generated by the scaled translates of the trivariate C 2 quartic box spline B defined by a set X of seven directions, that forms a regular partition of the space into tetrahedra. Then, we construct new cubature rules for 3D integrals, based on spline quasi-interpolants expressed as linear combinations of scaled translates of B and local linear functionals.

We give weights and nodes of the above rules and we analyse their properties.

Finally, some numerical tests and comparisons with other known integration formulas are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alayliouglu, A., Lubinsky, D.S., Eyre, D.: Product integration of logarithmic singular integrands based on cubic splines. J. Comput. Appl. Math. 11, 353–366 (1984)

    Article  MathSciNet  Google Scholar 

  2. Bojanov, B.D., Hakopian, H.A., Sahakian, A.A.: Spline Functions and Multivariate Interpolation. Kluwer, Dordrecht (1993)

    Book  Google Scholar 

  3. Dagnino, C., Lamberti, P.: Numerical integration of 2-D integrals based on local bivariate C 1 quasi-interpolating splines. Adv. Comput. Math. 8, 19–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dagnino, C., Lamberti, P.: Finite part integrals of local bivariate C 1 quasi-interpolating splines. Approx. Theory Appl. (N.S.) 16(4), 68–79 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Dagnino, C., Palamara Orsi, A.: Product integration of piecewise continuous integrands based on cubic spline interpolation at equally spaced nodes. Numer. Math. 52, 459–466 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dagnino, C., Rabinowitz, P.: Product integration of singular integrands using quasi-interpolatory splines. Approximation theory and applications. Comput. Math. Appl. 33, 59–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dagnino, C., Demichelis, V., Santi, E.: An algorithm for numerical integration based on quasi-interpolating splines. Numer. Algorithms 5, 443–452 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dagnino, C., Demichelis, V., Santi, E.: Numerical integration based on quasi-interpolating splines. Computing 50, 149–163 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dagnino, C., Perotto, S., Santi, E.: Convergence of rules based on nodal splines for the numerical evaluation of certain 2D Cauchy principal value integrals. J. Comput. Appl. Math. 89(2), 225–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)

    MATH  Google Scholar 

  11. de Boor, C.: B-form basics. In: Farin, G.E. (ed.) Geometric Modeling: Algorithms and New Trends, pp. 131–148. Society for Industrial and Applied Mathematics, Philadelphia (1987)

    Google Scholar 

  12. de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer, New York (1993)

    Book  MATH  Google Scholar 

  13. Demichelis, V., Sablonnière, S.: Numerical integration by spline quasi-interpolants in three variables. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curve and Surface Fitting, Avignon, 2006, pp. 131–140. Nashboro, Nashville (2007)

    Google Scholar 

  14. Demichelis, V., Sablonnière, S.: Cubature rule associated with a discrete blending sum of quadratic spline quasi-interpolants. J. Comput. Appl. Math. 235, 174–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diethelm, K.: Uniform convergence of optimal order quadrature rules for Cauchy principal value integrals. J. Comput. Appl. Math. 56, 321–329 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans, G.A.: Practical Numerical Integration. Wiley, New York (1993)

    MATH  Google Scholar 

  17. Genz, A.C.: Testing multidimensional integration routines. In: Ford, B., Rault, J.C., Thomasset, F. (eds.) Tools, Methods and Languages for Scientific and Engineering Computation, pp. 81–94. North Holland, Amsterdam (1984)

    Google Scholar 

  18. Genz, A.C.: A package for testing multiple integration subroutines. In: Keast, P., Fairweather, G. (eds.) Numerical Integration: Recent Developments, Software and Applications, pp. 337–340. Reidel, Dordrecht (1987)

    Chapter  Google Scholar 

  19. Greville, T.N.E.: Spline functions, interpolation and numerical quadrature. In: Ralston, A., Wilf, H.S. (eds.) Mathematical Methods for Digital Computers, Vol. II, pp. 156–168. Wiley, New York (1967)

    Google Scholar 

  20. Kim, M., Peters, J.: Fast and stable evaluation of box-splines via the BB-form. Numer. Algorithms 50(4), 381–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krylov, V.I.: Approximate Calculation of Integrals. Macmillan, New York (1962)

    MATH  Google Scholar 

  22. Lamberti, P.: Numerical integration based on bivariate quadratic spline quasi-interpolants on bounded domains. BIT Numer. Math. 49, 565–588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, C.J., Dagnino, C.: An adaptive numerical integration algorithm for polygons. Appl. Numer. Math. 60, 165–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, C.J., Lamberti, P., Dagnino, C.: Numerical integration over polygons using an eight-node quadrilateral spline finite element. J. Comput. Appl. Math. 233, 279–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C.J., Demichelis, V., Dagnino, C.: Finite-part integrals over polygons by an 8-node quadrilateral spline finite element. BIT Numer. Math. 50, 377–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peters, J.: C 2 surfaces built from zero sets of the 7-direction box spline. In: Mullineux, G. (ed.) IMA Conference on the Mathematics of Surfaces, pp. 463–474. Clarendon, Oxford (1994)

    Google Scholar 

  27. Rabinowitz, P.: Numerical integration based on approximating splines. J. Comput. Appl. Math. 33, 73–83 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Remogna, S.: Quasi-interpolation operators based on the trivariate seven-direction C 2 quartic box spline. BIT Numer. Math. 51(3), 757–776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sablonnière, P.: A quadrature formula associated with a univariate quadratic spline quasi-interpolant. BIT Numer. Math. 47, 825–837 (2007)

    Article  MATH  Google Scholar 

  30. Sablonnière, P., Sbibih, D., Tahrichi, M.: Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions. BIT Numer. Math. 53(1), 175–192 (2013)

    Article  MATH  Google Scholar 

  31. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  32. Wang, R.H., Zhang, X.L.: Numerical integration based on bivariate quartic quasi-interpolation operators. Numer. Math. J. Chin. Univ. 16, 226–232 (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Remogna.

Additional information

Communicated by Tom Lyche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagnino, C., Lamberti, P. & Remogna, S. Numerical integration based on trivariate C 2 quartic spline quasi-interpolants. Bit Numer Math 53, 873–896 (2013). https://doi.org/10.1007/s10543-013-0431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0431-7

Keywords

Mathematics Subject Classification (2010)

Navigation