Skip to main content
Log in

A posteriori error analysis for a continuous space-time finite element method for a hyperbolic integro-differential equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

An integro-differential equation of hyperbolic type, with mixed boundary conditions, is considered. A continuous space-time finite element method of degree one is formulated. A posteriori error representations based on space-time cells is presented such that it can be used for adaptive strategies based on dual weighted residual methods. A posteriori error estimates based on weighted global projections and local projections are also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolfsson, K., Enelund, M., Larsson, S.: Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel. Comput. Methods Appl. Mech. Eng. 192, 5285–5304 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adolfsson, K., Enelund, M., Larsson, S.: Adaptive discretization of fractional order viscoelasticity using sparse time history. Comput. Methods Appl. Mech. Eng. 193, 4567–4590 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adolfsson, K., Enelund, M., Larsson, S., Racheva, M.: Discretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity. LNCS, vol. 3743, pp. 76–83 (2006)

    Google Scholar 

  4. Adolfsson, K., Enelund, M., Larsson, S.: Space-time discretization of an integro-differential equation modeling quasi-static fractional-order viscoelasticity. J. Vib. Control 14, 1631–1649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  6. Bangerth, W., Geiger, M., Rannacher, R.: Adaptive Galerkin finite element methods for the wave equation. Comput. Methods Appl. Math. 10, 3–48 (2010)

    MathSciNet  Google Scholar 

  7. Boman, M.: Estimates for the L 2-projection onto continuous finite element spaces in a weighted L p -norm. BIT Numer. Math. 46, 249–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. 4, 105–158 (1995)

    Article  MathSciNet  Google Scholar 

  9. Johnson, C.: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107, 117–129 (1993)

    Article  MATH  Google Scholar 

  10. Karamanou, M., Shaw, S., Warby, M.K., Whiteman, J.R.: Models, algorithms and error estimation for computational viscoelasticity. Comput. Methods Appl. Mech. Eng. 194, 245–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Larsson, S., Saedpanah, F.: The continuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. IMA J. Numer. Anal. 30, 964–986 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65, 1–17 (1996)

    Article  MATH  Google Scholar 

  14. McLean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equ. Appl. 22, 57–94 (2010)

    Article  MATH  Google Scholar 

  15. McLean, W., Thomée, V., Wahlbin, L.B.: Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69, 49–69 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rivera, J.E.M., Menzala, G.P.: Decay rates of solution to a von Kármán system for viscoelastic plates with memory. Q. Appl. Math. Eng. LVII, 181–200 (1999)

    Google Scholar 

  17. Rivière, B., Shaw, S., Whiteman, J.R.: Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems. Numer. Methods Partial Differ. Equ. 23, 1149–1166 (2007)

    Article  MATH  Google Scholar 

  18. Saedpanah, F.: A posteriori error analysis for a continuous space-time finite element method for a hyperbolic integro-differential equation. Cornell University Library, arXiv:1205.0159

  19. Saedpanah, F.: Well-posedness of an integro-differential equation with positive type kernels modeling fractional order viscoelasticity. Cornell University Library, arXiv:1203.4001

  20. Schädle, A., López-Fernández, M., Lubich, C.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shaw, S., Whiteman, J.R.: A posteriori error estimates for space-time finite element approximation of quasistatic hereditary linear viscoelasticity problems. Comput. Methods Appl. Mech. Eng. 193, 5551–5572 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shaw, S., Warby, M.K., Whiteman, J.R.: Discretization error and modelling error in the context of the rapid inflation of hyperelastic membranes. IMA J. Numer. Anal. 30, 302–333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Svensson, E.: Multigrid methods on adaptively refined triangulations: practical considerations. Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Preprint 2006:23

Download references

Acknowledgements

I would like thank Prof. Stig Larsson for helpful discussion and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fardin Saedpanah.

Additional information

Communicated by Ragnar Winther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saedpanah, F. A posteriori error analysis for a continuous space-time finite element method for a hyperbolic integro-differential equation. Bit Numer Math 53, 689–716 (2013). https://doi.org/10.1007/s10543-013-0424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0424-6

Keywords

Mathematics Subject Classification (2010)

Navigation