Skip to main content
Log in

On energy preserving consistent boundary conditions for the Yee scheme in 2D

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The Yee scheme is one of the most popular methods for electromagnetic wave propagation. A main advantage is the structured staggered grid, making it simple and efficient on modern computer architectures. A downside to this is the difficulty in approximating oblique boundaries, having to resort to staircase approximations.

In this paper we present a method to improve the boundary treatment in two dimensions by, starting from a staircase approximation, modifying the coefficients of the update stencil so that we can obtain a consistent approximation while preserving the energy conservation, structure and the optimal CFL-condition of the original Yee scheme. We prove this in L 2 and verify it by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Note that TE will never refer to the transverse electric field from here on.

References

  1. Cangellaris, A., Wright, D.: Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena. IEEE Trans. Antennas Propag. 39(10), 1518–1525 (1991)

    Article  Google Scholar 

  2. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dey, S., Mittra, R.: A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects. IEEE Microw. Guided Wave Lett. 7(9), 273–275 (1997)

    Article  Google Scholar 

  4. Dey, S., Mittra, R.: A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects. Microw. Opt. Technol. Lett. 17(6), 349–352 (1998)

    Article  Google Scholar 

  5. Ditkowski, A., Dridi, K., Hesthaven, J.S.: Convergent Cartesian grid methods for Maxwell’s equations in complex geometries. J. Comput. Phys. 170(1), 39–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gottlieb, D., Gustafsson, B., Olsson, P., Strand, B.: On the superconvergence of Galerkin methods for hyperbolic IBVP. SIAM J. Numer. Anal. 33(5), 1778–1796 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comput. 29(130), 396–406 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer, Berlin (2008)

    MATH  Google Scholar 

  9. Gustafsson, B., Kreiss, H.O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problems. ii. Math. Comput. 26(119), 649–686 (1972)

    Article  MATH  Google Scholar 

  10. Hao, Y., Railton, C.: Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD meshes. IEEE Trans. Microw. Theory Tech. 46(1), 82–88 (1998)

    Article  Google Scholar 

  11. Hesthaven, J.: High-order accurate methods in time-domain computational electromagnetics: A review. Adv. Imaging Electron Phys. 127, 59–123 (2003)

    Article  Google Scholar 

  12. Holland, R.: Pitfalls of staircase meshing. IEEE Trans. Electromagn. Compat. 35(4), 434–439 (1993)

    Article  MathSciNet  Google Scholar 

  13. Jurgens, T., Taflove, A.: Three-dimensional contour FDTD modeling of scattering from single and multiple bodies. IEEE Trans. Antennas Propag. 41(12), 1703–1708 (1993)

    Article  Google Scholar 

  14. Jurgens, T., Taflove, A., Umashankar, K., Moore, T.: Finite-difference time-domain modeling of curved surfaces [EM scattering]. IEEE Trans. Antennas Propag. 40(4), 357–366 (1992)

    Article  Google Scholar 

  15. Mattsson, K.: Boundary procedures for summation-by-parts operators. J. Sci. Comput. 18, 133–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Monorchio, A., Mittra, R.: A hybrid finite-element finite-difference time-domain (FE/FDTD) technique for solving complex electromagnetic problems. IEEE Microw. Guided Wave Lett. 8(2), 93–95 (1998)

    Article  Google Scholar 

  17. Nieter, C., Cary, J.R., Werner, G.R., Smithe, D.N., Stoltz, P.H.: Application of Dey-Mittra conformal boundary algorithm to 3d electromagnetic modeling. J. Comput. Phys. 228, 7902–7916 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45(4), 453–473 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Railton, C., Craddock, I.: Stabilised CPFDTD algorithm for the analysis of arbitrary 3D PEC structures. IEE Proc., Microw. Antennas Propag. 143(5), 367–372 (1996)

    Article  Google Scholar 

  20. Railton, C., Schneider, J.: An analytical and numerical analysis of several locally conformal FDTD schemes. IEEE Trans. Microw. Theory Tech. 47(1), 56–66 (1999)

    Article  Google Scholar 

  21. Rylander, T., Bondeson, A.: Stable FEM-FDTD hybrid method for Maxwell’s equations. Comput. Phys. Commun. 125(1–3), 75–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shang, J.S.: High-order compact-difference schemes for time-dependent Maxwell equations. J. Comput. Phys. 153(2), 312–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tolan, J.G., Schneider, J.B.: Locally conformal method for acoustic finite-difference time-domain modeling of rigid surfaces. J. Acoust. Soc. Am. 114(5), 2575–2581 (2003)

    Article  Google Scholar 

  24. Tornberg, A.K.: Regularization techniques for singular source terms in differential equations. In: Laptev, A. (ed.) European Congress of Mathematics (ECM), Stockholm, Sweden, June 27–July 2 2004. European Mathematical Society, Zurich (2005)

    Google Scholar 

  25. Tornberg, A.K., Engquist, B.: Regularization techniques for numerical approximation of PDEs with singularities. J. Sci. Comput. 19, 527–552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462–488 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tornberg, A.K., Engquist, B.: Regularization for accurate numerical wave propagation in discontinuous media. Methods Appl. Anal. 13, 247–274 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Tornberg, A.K., Engquist, B.: Consistent boundary conditions for the Yee scheme. J. Comput. Phys. 227(14), 6922–6943 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tornberg, A.K., Engquist, B., Gustafsson, B., Wahlund, P.: A new type of boundary treatment for wave propagation. BIT Numer. Math. 46 (supplement), 145–170 (2006)

    Article  MathSciNet  Google Scholar 

  30. Trefethen, L.N.: Stability of finite-difference models containing two boundaries or interfaces. Math. Comput. 45(172), 279–300 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Turkel, E.: Progress in computational physics. Comput. Fluids 11(2), 121–144 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, R.B., Itoh, T.: Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements. IEEE Trans. Antennas Propag. 45(8), 1302–1309 (1997)

    Article  Google Scholar 

  33. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  34. Young, J., Gaitonde, D., Shang, J.: Toward the construction of a fourth-order difference scheme for transient em wave simulation: staggered grid approach. IEEE Trans. Antennas Propag. 45(11), 1573–1580 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu, W., Mittra, R.: A conformal FDTD algorithm for modeling perfectly conducting objects with curve-shaped surfaces and edges. Microw. Opt. Technol. Lett. 27(2), 136–138 (2000)

    Article  Google Scholar 

  36. Zagorodnov, I., Schuhmann, R., Weiland, T.: A uniformly stable conformal FDTD-method in Cartesian grids. Int. J. Numer. Model. 16(2), 127–141 (2003)

    Article  MATH  Google Scholar 

  37. Zagorodnov, I., Schuhmann, R., Weiland, T.: Conformal FDTD-methods to avoid time step reduction with and without cell enlargement. J. Comput. Phys. 225(2), 1493–1507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Häggblad.

Additional information

Communicated by Jan Hesthaven.

Engquist’s research was partially supported by the NSF grants DMS-0714612 and DMS-1016577. Häggblad’s research was supported by the CIAM project of the Swedish Foundation for Strategic Research. Runborg’s research was partially supported by Swedish e-Science Research Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engquist, B., Häggblad, J. & Runborg, O. On energy preserving consistent boundary conditions for the Yee scheme in 2D. Bit Numer Math 52, 615–637 (2012). https://doi.org/10.1007/s10543-012-0376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-012-0376-2

Keywords

Mathematics Subject Classification (2010)

Navigation