Skip to main content
Log in

Visualizing parametric solution sets

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We characterize the boundary ∂Σp of the solution set Σp of a parametric linear system A(p)x=b(p) where the elements of the n×n matrix and the right-hand side vector depend on a number of parameters p varying within interval bounds. The characterization of ∂Σp is by means of pieces of parametric hypersurfaces, the latter represented by their coordinate functions depending on corresponding subsets of n-1 parameters. The presented approach has a direct application for efficient visualization of parametric solution sets by utilizing some plotting functions supported by Mathematica and Maple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ackermann, A. Bartlett, D. Kesbauer, W. Sienel, and R. Steinhauser, Robust Control: Systems with Uncertain Physical Parameters, Springer, Berlin, 1994.

    Google Scholar 

  2. B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994.

    MATH  Google Scholar 

  3. M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, Real Submanifolds in Complex Space and Their Mappings, Princeton Univ. Press, Princeton, New Jersey, 1999.

    Book  MATH  Google Scholar 

  4. G. Alefeld, V. Kreinovich, and G. Mayer, On the shape of the symmetric, persymmetric, and skew-symmetric solution set, SIAM J. Matrix Anal. Appl., 18(3) (1997), pp. 693–705.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Alefeld, V. Kreinovich, and G. Mayer, The shape of the solution set for systems of interval linear equations with dependent coefficients, Math. Nachr., 192 (1998), pp. 23–36.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Alefeld, V. Kreinovich, and G. Mayer, On symmetric solution sets, Comput. Suppl., 16 (2002), pp. 1–22.

    MathSciNet  MATH  Google Scholar 

  7. G. Alefeld, V. Kreinovich, and G. Mayer, On the solution sets of particular classes of linear interval systems, J. Comput. Appl. Math., 152 (2003), pp. 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  9. G. E. Collins, Quantifier elimination by cylindrical algebraic decomposition – twenty years of progress, in B. F. Caviness and J. R. Johnson (eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition, Springer, New York, 1998, pp. 8–23.

  10. A. Ganesan, S. Ross, B. Ross Barmish, An extreme point result for convexity, concavity and monotonicity of parametrized linear equation solutions, Linear Algebra Appl., 390 (2004), pp. 61–73.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Kofler, Maple: An Introduction and Reference, Addison-Wesley, Reading, MA, 1997.

    Google Scholar 

  12. W. Krämer, Computing and visualizing the exact solution set of systems of equations with interval coefficients, in 12th International Conference on Applications of Computer Algebra (ACA’06), June 26–29, 2006, Varna, Bulgaria.

  13. M. Kraus, LiveGraphics3D: a Java applet which can display Mathematica graphics, http://www.vis.uni-stuttgart.de/∼kraus/LiveGraphics3D/.

  14. R. L. Muhannah, R. L. Mullen (eds.), in Proceedings of the NSF Workshop on Reliable Engineering Computing, Svannah, Georgia USA, Feb. 22–24, 2006, http://www.gtsav.gatech.edu/workshop/rec06/proceedings.html.

  15. W. Oettli, W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numer. Math., 6 (1964), pp. 405–409.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Okumura, An application of interval operations to electric network analysis, Bull. Japan Soc. Industr. Appl. Math., 2 (1993), pp. 115–127.

    Google Scholar 

  17. E. Popova, On the solution of parametrised linear systems, in W. Krämer, J. Wolff von Gudenberg (eds.), Scientific Computing, Validated Numerics, Interval Methods, Kluwer Acad. Publishers, Boston, Dordrecht, London, 2001, pp. 127–138.

  18. E. Popova, Web-accessible tools for interval linear systems, Proc. Appl. Math. Mech. (PAMM), 5(1) (2005), pp. 713–714.

    Article  MATH  Google Scholar 

  19. M. Spivak, A Comprehensive Introduction to Differential Geometry, four volumes, 2nd edn., Publish or Perish Inc., Berkeley, 1979.

  20. S. Wolfram, The Mathematica Book, 4th edn., Wolfram Media/Cambridge U. Press, New York, 1999.

    Google Scholar 

  21. Wolfram Res. Inc., The Mathematica Player, 2007 (http://www.wolfram.com/products/player).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Popova.

Additional information

Communicated by Lars Eldén.

AMS subject classification (2000)

15A06, 65G99, 65S05, 68U05

Electronic Supplementary Material

This file is unfortunately not in the Publisher's archive anymore: 3D Example 1 800KB

3D Example 2 800KB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, E., Krämer, W. Visualizing parametric solution sets. Bit Numer Math 48, 95–115 (2008). https://doi.org/10.1007/s10543-007-0159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-007-0159-3

Key words

Navigation