Skip to main content
Log in

Evidence for proximal cysteine and lysine residues at or near the ative site of arginine kinase of Stichopus japonicus

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Inactivation of arginine kinase (AK) of Stichopus japonicus by o-phthalaldehyde (OPTA) was investigated. The modified enzyme showed an absorption peak at 337 nm and a fluorescent emission peak at 410 nm, which are characteristic of an isoindole derivative formed by OPTA binding to a thiol and an amine group in proximity within the enzyme. Loss of enzymatic activity was concomitant with an increase in fluorescence intensity at 410 nm. Stoichiometry studies by Tsou’s method showed that among the cysteine residues available for OPTA modification in the enzyme, only one was essential for the enzyme activity. This cysteine residue is located in a highly hydrophobic environment, presumably near ATP and ADP binding region. This conclusion was verified by 5,5′-dithiobis(2-nitrobenzoic acid) modification. In addition, these results were supported by means of electrophoresis and ultraviolet, fluorescence, circular dichroism spectroscopy and fast performance liquid chromatography. Sequence comparison suggested that this essential cysteine residue maybe the conservative Cys274.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FPLC:

fast performance liquid chromatography

AK:

arginine kinase

CD:

circular dichroism

CK:

creatine kinase

DTNB:

5,5′-dithiobis(2-nitrobenzoic acid)

OPTA:

o-phthalaldehyde

PArg:

phosphoarginine

REFERENCES

  1. D. C. Watts (1971) NoChapterTitle E. Schoffeniels (Eds) Evolution of Phosphagen Kinases in Biochemical Evolution and the Origin of Life North Holland Amsterdam 150–173

    Google Scholar 

  2. D. C. Watts (1975) Symp. Zool. Soc. Lond. 36 105–127

    Google Scholar 

  3. T. Suzuki M. Kamidochi N. Inoue H. Kawamichi Y. Yazawa T. Furukohri W. R. Ellington (1999) Biochem. J. 340 671–675

    Google Scholar 

  4. S. Sheikh K. Mukunda S. S. Katiyar (1993) Biochim. Biophys. Acta 1203 276–281

    Google Scholar 

  5. S. Yilmaz I. Ozer (1990) Arch. Biochem. Biophys. 279 32–36

    Google Scholar 

  6. G. Zhou T. Somasundaram E. Blanc G. Parthasarathy W. R. Ellington M. S. Chapman (1998) Proc. Natl. Acad. Sci. USA 95 8449–8454

    Google Scholar 

  7. M. S. Yousef S. A. Clark P. K. Pruett T. Somasundaram W. R. Ellington M. S. Chapman (2003) Protein Sci. 12 103–111

    Google Scholar 

  8. J. R. Benson P. E. Hare (1975) Proc. Natl. Acad. Sci. USA 72 619–622

    Google Scholar 

  9. Q. K. Huynh (1990) J. Biol. Chem. 265 6700–6704

    Google Scholar 

  10. R. N. Puri R. Roskoski SuffixJr. (1988) Analyt. Biochem. 173 26–32

    Google Scholar 

  11. S. P. George A. Ahmad M. B. Rao (2001) Biochem. Biophys. Res. Commun. 282 48–54

    Google Scholar 

  12. A. Pandey S. Sheikh S. Katiyar (1996) Biochim. Biophys. Acta 1293 122–128

    Google Scholar 

  13. C. Y. Chen F. A. Emig V. L. Schramm D. E. Ash (1991) J. Biol. Chem. 266 16645–16652

    Google Scholar 

  14. E. O. Anosike B. H. Moreland D. C. Watts (1975) Biochem. J. 145 535–543

    Google Scholar 

  15. M. M. Bradford (1976) Analyt. Biochem. 72 248–254

    Google Scholar 

  16. L. B. Q. Xiang (1996) Beijing Agric. Sci. 14 39–40

    Google Scholar 

  17. B. Y. Chen Q. Guo Z. Guo X. C. Wang (2003) Tsinghua Sci. Technol. 8 422–427

    Google Scholar 

  18. H. M. Zhou X. H. Zhang Y. Yin C. L. Tsou (1993) Biochem. J. 291 103–107

    Google Scholar 

  19. S. S. Simons SuffixJr. E. B. Thompson D. F. Johnson (1979) Biochemistry 18 4915–4922

    Google Scholar 

  20. H. M. Zhou H. R. Wang (1998) Chemical Modification of Proteins Tsinghua University Press Beijing

    Google Scholar 

  21. B. Font C. Vial D. Goldschmidt D. Eichenberger D. C. Gautheron (1981) Arch. Biochem. Biophys. 212 195–203

    Google Scholar 

  22. Y. B. Zheng Z. Wang B. Y. Chen X. C. Wang (2003) Int. J. Biol. Macromol. 32 191–197

    Google Scholar 

  23. T. E. Creighton (1997) Protein Structure: A Practical Approach Oxford University Press London

    Google Scholar 

  24. S. P. George M. B. Rao (2001) Eur. J. Biochem. 268 2881–2888

    Google Scholar 

  25. J. Y. Ahn S. Choi S. W. Cho (1999) Biochimie 81 1123–1129

    Google Scholar 

  26. Y. V. Reddy D. N. Rao (1998) J. Biol. Chem. 273 23866–23876

    Google Scholar 

  27. J. K. Stoops S. J. Henry S. J. Wakil (1983) J. Biol. Chem. 258 12482–12486

    Google Scholar 

  28. M. Kobayashi M. Miura E. Ichishima (1992) Biochem. Biophys. Res. Commun. 183 321–326

    Google Scholar 

  29. A. S. Bhagwat A. Blokesch K. D. Irrgang J. Salnikow J. Vater (1993) Arch. Biochem. Biophys. 304 38–44

    Google Scholar 

  30. Y. M. Khan M. Wictome J. M. East A. G. Lee (1996) Biochem. J. 317 433–437

    Google Scholar 

  31. M. H. Rider L. Hue (1989) Biochem. J. 262 97–102

    Google Scholar 

  32. R. N. Puri D. Bhatnagar D. B. Glass R. Roskoski SuffixJr. (1985) Biochemistry 24 6508–6514

    Google Scholar 

  33. S. Yilmaz I. Ozer (1990) Arch. Biochem. Biophys. 279 32–36

    Google Scholar 

  34. S. Sheikh K. Mukunda S. S. Katiyar (1993) Biochim. Biophys. Acta 1203 276–281

    Google Scholar 

  35. K. Palczewski P. A. Hargrave M. Kochman (1983) Eur. J. Biochem. 137 429–435

    Google Scholar 

  36. P. F. Hollenberg M. Flashner M. J. Coon (1971) J. Biol. Chem. 246 946–953

    Google Scholar 

  37. T. Suzuki Y. Yamamoto M. Umekawa (2000) Biochem. J. 351 579–585

    Google Scholar 

  38. S. Y. Guo Z. Guo Q. Guo B. Y. Chen X. C. Wang (2003) Protein Exp. Purif. 29 230–234

    Google Scholar 

  39. X. C. Wang H. M. Zhou Z. X. Wang C. L. Tsou (1990) Biochim. Biophys. Acta 1039 313–317

    Google Scholar 

  40. S. R. Reddy D. C. Watts (1994) Comp. Biochem. Physiol. Biochem. Mol. Biol. 108 73–78

    Google Scholar 

  41. J. M. Cox C. A. Davis C. Chan M. J. Jourden A. D. Jorjorian M. J. Brym M. J. Snider C. L. Borders SuffixJr. P. L. Edmiston (2003) Biochemistry 42 1863–1871

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiCheng Wang.

Additional information

Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1639–1648.

Original Russian Text Copyright © 2004 by Qin Guo, BaoYu Chen, XiCheng Wang.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-047, June 27, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Q., Chen, B. & Wang, X. Evidence for proximal cysteine and lysine residues at or near the ative site of arginine kinase of Stichopus japonicus . Biochemistry (Moscow) 69, 1336–1343 (2004). https://doi.org/10.1007/s10541-005-0078-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0078-3

Key words

Navigation