Skip to main content
Log in

Cells as irreducible wholes: the failure of mechanism and the possibility of an organicist revival

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

According to vitalism, living organisms differ from machines and all other inanimate objects by being endowed with an indwelling immaterial directive agency, ‘vital force,’ or entelechy. While support for vitalism fell away in the late nineteenth century many biologists in the early twentieth century embraced a non vitalist philosophy variously termed organicism/holism/emergentism which aimed at replacing the actions of an immaterial spirit with what was seen as an equivalent but perfectly natural agency—the emergent autonomous activity of the whole organism. Organicists hold that organisms unlike machines are ‘more than the sum of their parts’ and predict that the vital properties of living things can never be explained in terms of mechanical analogies and that the reductionist agenda is doomed to failure. Here we review the current status of the mechanist and organicist conceptions of life particularly as they apply to the cell. We argue that despite the advances in biological knowledge over the past six decades since the molecular biological revolution, especially in the fields of genetics and cell biology the unique properties of living cells have still not been simulated in mechanical systems nor yielded to reductionist—analytical explanations. And we conclude that despite the dominance of the mechanistic–reductionist paradigm through most of the past century the possibility of a twentyfirst century organicist revival cannot be easily discounted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agar WE (1943) A contribution to the theory of the living organism. Melbourne University Press, Melbourne

    Google Scholar 

  • Ainsworth C (2009) Cells go fractal. Nature News published on line 4 Sept. doi:10.1038/news.2009.880

  • Alberts B et al (2007) Molecular biology of the cell. Garland Press, NY

    Google Scholar 

  • Alexander S (1920) Space, time, and deity. Macmillan, London

    Google Scholar 

  • Anderson PW (1972) More is different. Science 177:393–396

    Article  Google Scholar 

  • Aon MA, O’Bourke B, Cortassa S (2004) The fractal architecture of cytoplasmic organization: scaling, kinetics, and emergence in metabolic networks. Mol Cell Biochem 256(257):169–184

    Article  Google Scholar 

  • Aristotle (1937) Parts of animals. English translation by A. L. Peck. Heinemann, London

  • Beckner M (1967) Organismic biology. In: Paul E (ed) Encyclopedia of philosophy, vol 5. MacMillan Publishing Inc.\The Free Press, NY, pp 549–551

    Google Scholar 

  • Bedau M (2002) Downward causation and the anatomy of weak emergence. Principia 6:5–50

    Google Scholar 

  • Bertalanffy VL (1969) General systems theory, foundations, development, applications. George Braziller, NY

    Google Scholar 

  • Brandon C, Tooze J (1999) Introduction to protein structure, 2nd edn. Garland Publishing Inc., NY

    Google Scholar 

  • Broad CD (1925) The mind and its place in nature. Kegan Paul, London

    Google Scholar 

  • Camazine S, Deneubourg J-L, Franks NR, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton

    Google Scholar 

  • Carelli PV, Reyes MB, Sartorelli JC, Pinto RD (2005) Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting. Neurons J Neurophysiol 94:1169–1179

    Article  Google Scholar 

  • Chalmers DJ (2006) Strong and weak emergence. In: Clayton P, Davies PCW (eds) The reemergence of emergence; the emergentist hypothesis from science and religion. Oxford University Press, Oxford, pp 244–255

    Google Scholar 

  • Chialvo DR (2010) Emergent complex neural dynamic. Nat Phys 6:744–750

    Article  Google Scholar 

  • Clark KB (2010) Origins od learned reciprocity in solitary ciliates searching groups ‘courting’ assurances at quantum efficiencies. Biosysystems 99:27–41

    Google Scholar 

  • Clayton P (2004) Mind and emergence: from quantum to consciousness. Oxford University Press, Oxford

    Google Scholar 

  • Clayton P (2006) The conceptual foundations of emergence theory. In: Clayton P, Davies PCW (eds) The re-emergence of emergence: the emergentist hypothesis from science to religion. Oxford University Press, Oxford, pp 1–25

    Google Scholar 

  • Clayton NS, Emery NJ (2008) Clever corvids and political primates. In: Morris SC (ed) The deep structure of biology. Templeton Foundation Press, Pennslyvania

    Google Scholar 

  • Collins J (2010) Got parts, need manual. Nature 465:424

    Google Scholar 

  • Crick FC (1957) On protein synthesis. Symp Soc Exp Biol 12:138–163

    Google Scholar 

  • Crick F (2004) Of molecules and men. Prometheus Books, NY

  • Davies PCW (2006) The physics of downward causation. In: Clayton P, Davies PCW (eds) The reemergence of emergence; the emergentist hypothesis from science and religion. Oxford University Press, Oxford, pp 35–51

    Google Scholar 

  • Descartes (1985) Principles of philosophy. In: The philosophical writings of Descartes, vol 1 (Trans: Cottingham J, Stoothhoff R, Murdoch D). Cambridge University Press, Cambridge

  • Drexler E (1986) The engines of creation. Ancor Press, NY

    Google Scholar 

  • Driesch H (1914) The history and theory of vitalism. Macmillan, London

    Google Scholar 

  • Driesch H (1929) The science and philosophy of the organism. A. and C. Black, London

    Google Scholar 

  • Dupont C, Randall AD, Brenner CA (2009) Epigenetics: definitions mechanism and clinical perspectives. Semin Reprod Med 27:351–357

    Article  Google Scholar 

  • Eccleston A, DeWitt N, Gunter C, Marte B, Noth D (eds) (2007) Epigenetics. Nat Insights Epigenet 447:396–440

  • Edelmann J, Denton MJ (2007) The uniqueness of biological self organization: challenging the Darwinian paradigm. Biol Philos 22:579–601

    Article  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  Google Scholar 

  • Ford BJ (2010) The secret power of the single cell. New Sci (2757):26–27

  • Forgacs G, Newman SA (2005) The biological physics of the developing embryo. CUP, NY

    Book  Google Scholar 

  • Gierasch LM, Gershenson A (2009) Post-reductionist protein science, or putting Humpty–Dumpty back together again. Nat Chem Biol 11:774–777

    Article  Google Scholar 

  • Gilbert SF, Sarkar S (2000) Embracing complexity: organicism for the 21st century. Dev Dyn 219:1–9

    Article  Google Scholar 

  • Gleick J (1998) Chaos. Vintage Press, London

    Google Scholar 

  • Goldberg AD, ALLis CD, Berstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Gribben J (2005) Deep simplicity. Penguin Books, London

    Google Scholar 

  • Haig D (2004) The (dual) origins of epigenetics. Cold Spring Harb Symp Quant Biol 69:67–71

    Article  Google Scholar 

  • Haken H (1977) Synergetics: an introduction. Nonequilibrium phase transitions and self-organization in physics chemistry and biology. Springer, NY

    Google Scholar 

  • Harold F (2005a) To shape a cell: an enquiry into the causes of morphogenesis of microorganisms. Microbiol Rev 54:381–431

    Google Scholar 

  • Harold F (2005b) Molecules into cells: specifying spatial architecture. Micro Mol Biol Rev 69:544–564

    Google Scholar 

  • Hayden EC (2010) Life is complicated. Nature 464:664–667

    Article  Google Scholar 

  • Hofstadter DR (1999) Gödel, Escher, Bach. Basic Books, NY

    Google Scholar 

  • Hyman AA, Karsenti E (1996) Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84:401–410

    Article  Google Scholar 

  • Jennings HS (1906/1976) Behavior of the lower organisms. Indiana University Press, Bloomington

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  Google Scholar 

  • Johannsen W (1923) Some remarks about heredity. Hereditas 4:133–141

    Google Scholar 

  • Jonas H (2001) The phenomenon of life. North Western University Press, IL

    Google Scholar 

  • Judson HF (1979) The eighth day of creation. CSHL Press, Plainview

    Google Scholar 

  • Kant I (2010) Critique of judgement. Digireads, KS

    Google Scholar 

  • Karsenti E (2008) Self-organization in cell biology: a brief history. Nat Rev Mol Cell Biol 9:255–262

    Article  Google Scholar 

  • Kauffman SA (2000) Investigations. Oxford University Press, NY

    Google Scholar 

  • Keller EF (2000) The century of the gene. Harvard University Press, Cambridge

    Google Scholar 

  • Kelly EF (2007) Introduction. In: Kelly EF, Kelly EW (eds) Irreducible mind. Rowman and Littlefield, MD

    Google Scholar 

  • Keren K, Pinccus Z, Allen GM, Barnhart EL, Marriot G, Mogilner A, Theriot JA (2008) Mechanism of shape determination in motile cells. Nature 453:475–480

    Article  Google Scholar 

  • Kim J (1999) Making sense of emergence. Philos Stud 95:3–36

    Article  Google Scholar 

  • Kim J (2005) Physicalism, or something near enough. Princeton University Press, Princeton

    Google Scholar 

  • Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342

    Article  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  Google Scholar 

  • Koestler A (1990) The ghost in the machine. Penguin, London

    Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thomas ED, Thompson J, Wilmut I (2009) Essentials of stem cell biology. Academic Press, NY

    Google Scholar 

  • Laughlin RB, Pines D, Schamlian J, Stojkovic BP, Wolynes P (2000) The middle way. Proc Natl Acad Sci USA 97:32–37

    Article  Google Scholar 

  • Lazarides E (1987) From genes to structural morphogenesis: the genesis and epigenesis of a red blood cell. Cell 51:345–356

    Article  Google Scholar 

  • Lear J (1988) Aristotle: the desire to understand. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lehn JM (2002) Towards self-organization and complex matter. Science 295:2400–2403

    Article  Google Scholar 

  • Lewin R (1992) Complexity. Macmillan Press, NY

  • Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, Cheung VG (2011) Widespread RNA and DNA sequence differences in the human transcriptome. Science 333:53–58

    Google Scholar 

  • Lopez J, Percharde M, Coley HM, Webb A, Crook I (2009) The context and potential of epigenetics in ocology. Br J Cancer 100:571–577

    Article  Google Scholar 

  • Maher B (2008) Personal genomes: the case of the missing hereditability. Nature 456:18–21

    Article  Google Scholar 

  • Mayer BJ, Blinoy ML, Loew LM (2009) Molecular machines or pleiomorphic ensembles: signaling complexes revisited. J Biol 8:81.1–81.8. doi:10.1186/jbiol185

    Article  Google Scholar 

  • McDougall W (1938) The riddle of life. Methuen, London

    Google Scholar 

  • Misteli T (2001) The concept of self organization in cellular architecture. J Cell Biol 155:181–185

    Article  Google Scholar 

  • Misteli T (2009) Self organization in the genome. Proc Nat Acad Sci USA 106:6885–6886

    Article  Google Scholar 

  • Monod J (1972) Chance and necessity. Collins, London

    Google Scholar 

  • Morgan Lloyd C (1923) Emergent evolution. Williams and Norgate, London

    Google Scholar 

  • Morrison M (2006) Emergence, reduction and theoretical principles: rethinking fundamentalism. Philos Sci 73:876–887

    Article  Google Scholar 

  • Nanney DL (1957) The role of the cytoplasm in heredity. In: McElroy WD, Glass B (eds) The chemical basis of heredity. Johns Hopkins University Press, Baltimore, pp 134–163

    Google Scholar 

  • Nanney DL (1958) Epigenetic control systems. Proc Natl Acad Sci USA 44:712–717

    Article  Google Scholar 

  • Nedelec FJ, Surrey T, Maggs AC, Liebler S (1997) Self-organization of microtubules and motors. Nature 389:305–308

    Article  Google Scholar 

  • Nijhout HF (1990) Metaphors and the role of genes in development. Bioessays 12:441–446

    Article  Google Scholar 

  • Nijhout FH (1999) When developmental pathways diverge. PNAS US 96:5348–5350

    Article  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Google Scholar 

  • Perdew GH, Vanden Heuvel JP, Peters JM (2006) Regulation of gene expression: molecular mechanisms. Humana Press, Totowa

    Google Scholar 

  • Platt JR (1961) Properties of large molecules that go beyond the properties of their chemical subgroups. J Theoret Biol 1:342–358

    Google Scholar 

  • Rajapakse I, Perlmanc MD, Scalzoa D, Kooperbergb C, Groudinea M, Kosake ST (2009) The emergence of lineage-specific chromosomal topologies from coordinate gene regulation. Proc Natl Acad Sci USA 106:6679–6684

    Article  Google Scholar 

  • Rhind SM, Taylor JE, De Sousa PA, King TJ, McGrary M, Wilmut I (2003) Human cloning: can it be made safe. Nat Rev Genet 4:855–864

    Article  Google Scholar 

  • Rickles D (2006) Supervenience and determination. Internet Encyclopedia of Philosophy. http://www.iep.utm.edu/superven/

  • Ridley M (2007) Thinker: Francis Crick. New Humanist 122(1):6

    Google Scholar 

  • Ritter WE (1919) The unity of the organism, or the organismal conception of life. Gorham Press, Boston

    Book  Google Scholar 

  • Roll-Hansen N (1984) E. S. Russell and J. H. Woodger: the failure of two twentieth-century opponents of mechanistic biology. J Hist Biol 17:399–428

  • Russell ES (1930) The interpretation of development and heredity. Oxford University Press, Oxford

    Google Scholar 

  • Searle J (1992) The rediscovery of the mind. MIT Press, Cambridge

    Google Scholar 

  • Sherrington C (1963) Man on his nature. Cambridge University Press, Cambridge

    Google Scholar 

  • Shinbrot T, Muzzio FJ (2001) Noise to order. Nature 410:251–258

    Article  Google Scholar 

  • Silberstein M, McGeever J (1999) The search for ontological emergence. Philos Q 49:182–200

    Article  Google Scholar 

  • Sipper M, Reggia JA (2001) Go forth and replicate. Sci Am 285:34–43

    Article  Google Scholar 

  • Smith A-S (2010) Physics challenged by cells. Nat Phys 6:726–729

    Article  Google Scholar 

  • Smuts J (1927) Holism and evolution. Macmillan Press, London

  • Strohman RC (1993) Ancient genes, wise bodies, unhealthy people: limits of genetic thinking in biological medicine. Perspect Biol Med 37:112–144

    Google Scholar 

  • Sowerby SJ, Holm NG, Petersen GB (2001) Origins of life: a route to nanotechnology. Biosystems 61:69–78

    Article  Google Scholar 

  • Strogatz SH (1994) Non linear dynamics and chaos. Perseus Books, NY

    Google Scholar 

  • Tartar V (1961) The biology of Stentor. Pergammon Press, London

    Google Scholar 

  • Taylor E (2001) E.B. Wilson lecture: the cell as a molecular machine. Mol Biol Cell 12(2):251–254

    Google Scholar 

  • Thompson DW (1942) On growth and form, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  • Waddington CH (1956) Embryology, epigenetics and biogenetics. Nature 177:1241

    Article  Google Scholar 

  • Waddington CH (1962) New patterns on genetics and development. Columbia Press, New York

  • Watson JD (2003) DNA: the secret of life. Heinemann, London

    Google Scholar 

  • Weismann A (1904) The evolution theory. Edward Arnold, London

    Google Scholar 

  • Weiss P (1963) The cell as unit. J Theor Biol 5:389–397

    Article  Google Scholar 

  • Weiss P (1969) The living system: determinism stratified. In: Koestler A, Smythies JR (eds) Beyond reductionism. Hutchinson and Co, UK, pp 3–55

    Google Scholar 

  • Welch GR, Clegg JS (2010) From protoplasmic theory to cellular systems biology: a 150-year reflection. Am J Physiol Cell Physiol 298:C1280–C1290

    Article  Google Scholar 

  • Whitehead AN (1927) Science and the modern world. Cambridge University press, Cambridge

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  Google Scholar 

  • Wolpert L, Lewis J (1975) Towards a theory of development. Fed Proc 34:14–20

    Google Scholar 

  • Woodger JH (1929) Biological principles: a critical study. Paul Trench Trubner and Co, London

    Google Scholar 

  • Yates FE (1994) Order and complexity in dynamical systems: homeodynamics as a generalized mechanics for biology. Math Comput Model 19:49–74

    Article  Google Scholar 

  • Yerkes RM (1905) Animal psychology and criteria of the psychic. J Philos Psychol Sci Method 2:141–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Legge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denton, M.J., Kumaramanickavel, G. & Legge, M. Cells as irreducible wholes: the failure of mechanism and the possibility of an organicist revival . Biol Philos 28, 31–52 (2013). https://doi.org/10.1007/s10539-011-9285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-011-9285-z

Keywords

Navigation