Skip to main content
Log in

Overexpression of a harpin-encoding gene popW in tobacco enhances resistance against Ralstonia solanacearum

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

PopW, a harpin protein identified from Ralstonia solanacearum, has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens. Tobacco plants transformed with popW, the PopW-encoding gene, exhibited a promoted growth rate and enhanced resistance to Tobacco mosaic virus (TMV). Here, it is documented that the transgenic tobacco plants overexpressing popW exhibited a higher resistance to R. solanacearum YN10 infection compared with that of the wild-type plants. In the popW-expressing tobacco lines, an enhanced H2O2 accumulation and hypersensitive reaction (HR) were activated in the inoculated site. In addition, the resistance was accompanied with increased transcripts in numbers of genes related to defense (including HR), reactive oxygen species (ROS) scavenging, and salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) production. These results suggest that popW acted as positive regulator in tobacco resistance against R. solanacearum via modulation of SA-, JA-, and ET-mediated signaling pathways. We report for the first time that the expression of a harpin-encoding gene in vivo improved plant resistance to R. solanacearum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAB:

diaminobenzidine

dpi:

days post inoculation

E:

empty vector

ET:

ethylene

ETI:

effector-triggered immunity

HR:

hypersensitive reaction

JA:

jasmonic acid

PR:

pathogenesis-related

PTI:

pathogen/microbe-associated molecular patterns triggered immunity

ROS:

reactive oxygen species

SA:

salicylic acid

TMV:

Tobacco mosaic virus

WT:

wild-type

References

  • Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., Lamb, C.: Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. — Cell 92: 773–784, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Bernoux, M., Ellis, J.G., Dodds, P.N.: New insights in plant immunity signaling activation. — Curr. Opin. Plant Biol. 14: 512–518, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, N., Goodwin, P.H., Hsiang, T.: The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. — J. exp. Bot. 54: 2449–2456, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Choi, M.S., Heu, S., Paek, N.C., Koh, H.J., Lee, J.S., Oh, C.S.: Expression of hpa1 gene encoding a bacterial harpin protein in Xanthomonas oryzae pv. oryzae enhances disease resistance to both fungal and bacterial pathogens in rice and Arabidopsis. — Plant Pathol. J. 28: 364–372, 2012.

    Article  CAS  Google Scholar 

  • Choi, M.S., Kim, W., Lee, C., Oh, C.S.: Harpins, multifunctional proteins secreted by gram-negative plantpathogenic bacteria. — Mol. Plant-Microb. Interact. 26: 1115–1122, 2013.

    Article  CAS  Google Scholar 

  • Dang, F., Wang, Y., She, J., Lei, Y., Liu, Z., Eulgem, T., Lai, Y., Lin, J., Yu, L., Lei, D., Guan, D., Li, X., Yuan, Q., He, S.: Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factors of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. — Physiol. Plant. 150: 397–411, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Dodds, P.N., Rathjen, J.P.: Plant immunity: towards an integrated view of plant-pathogen interactions. — Natur. Rev. Genet. 11: 539–548, 2010.

    Article  CAS  Google Scholar 

  • Dong, H., Delaney, T.P., Bauer, D.W., Beer, S.V.: Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. — Plant J. 20: 207–215, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Dong, X.: SA, JA, ethylene, and disease resistance in plants. — Curr. Opin. Plant Biol. 1: 316–323, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, E.E., Almeras, E., Krishnamurthy, V.: Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. — Curr. Opin. Plant Biol. 6: 372–378, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Feys, B., Parker, J.: Interplay of signaling pathways in plant disease resistance. — Trends Genet. 16: 449–455, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Flores-Cruz, Z., Allen, C.: Ralstonia solanacearum encounters an oxidative environment during tomato infection. — Mol. Plant-Microb. Interact. 22: 773–782, 2009.

    Article  CAS  Google Scholar 

  • Fu, M., Xu, M., Zhou, T., Wang, D., Tian, S., Han, L., Dong, H., Zhang, C.: Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid. — J. exp. Bot. 65: 1439–1453, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu, Z.Q., Dong, X.: Systemic acquired resistance: turning local infection into global defense. — Annu. Rev. Plant Biol. 64: 839–863, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Genin, S., Boucher, C.: Ralstonia solanacearum: secrets of a major pathogen unveiled by analysis of its genome. — Mol. Plant Pathol. 3: 111–118, 2002.

    Article  PubMed  Google Scholar 

  • Greenberg, J.T., Yao, N.: The role and regulation of programmed cell death in plant-pathogen interactions. — Cell Microbiol. 6: 201–211, 2004.

    Article  CAS  PubMed  Google Scholar 

  • He, S.Y.: Elicitation of the plant hypersensitive response by bacteria. — Plant Physiol. 112: 865–869, 1996.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heath, M.C.: Hypersensitive response-related death. — Plant mol. Biol. 44: 321–334, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, S.F., Averre, C.W.: Root diseases of vegetables in hydroponic culture systems in North Carolina greenhouse. — Plant Dis. 9: 968–970, 1983.

    Article  Google Scholar 

  • Jones, J.D., Dangl, J.L.: The plant immune system. — Nature 444: 323–329, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kempe, J., Sequeira, L.: Biological control of baterial wilt of potatoes: attempts to induce resistance by treating tubes with bacteria. — Plant Dis. 67: 499–501, 1983.

    Article  Google Scholar 

  • Koornneef, A., Pieterse, C.M.J.: Cross talk in defense signaling. — Plant Physiol. 146: 839–844, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leon-Reyes, A., Du, Y., Koorneef, A., Proietti, S., Körbes, A.P., Memelink, J.: Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. — Mol. Plant-Microbe Interact. 23:187-197, 2010.

  • Li, J.G., Cao, J., Sun, F.F., Niu, D.D., Yan, F., Liu, H.X., Guo, J.H.: Control of Tobacco mosaic virus by PopW as a result of induced resistance in tobacco under greenhouse and field conditions. — Phytopathology 101: 1202–1208, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Li, J.G., Liu, H.X., Cao, J., Chen, L.F., Gu, C., Allen, C., Guo, J.H.: PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. — Mol. Plant Pathol. 11: 371–381, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Feng, X., Tang, M., Hao, W., Han, Y., Zhang, G., Wan, S.: Antibacterial activity of lansiumamide B to tobacco bacterial wilt (Ralstonia solanacearum). — Microbiol. Res. 169: 522–526, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Z., Xu, J.P., Meng, X.L., Lu, W., Wang, J., Xia, H.: Improve bioavailability of Harpin protein on plant use PLGA based nanoparticle. — J. Biotechnol. 143: 296–301, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras, V., Vilela, B., Irar, S., Sole, M., Capellades, M., Valls, M., Coca, M., Pages, M.: MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. — Plant J. 63: 1017–1030, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Miao, W., Wang, X., Song, C., Wang, Y., Ren, Y., Wang, J.: Transcriptome analysis of Hpa1Xoo transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance. — J. exp. Bot. 61: 4263–4275, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pavli, O.I., Kelaidi, G.I., Tampakaki, A.P., Skaracis, G.N.: The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. — PLoS ONE 6: e17306, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng, J.L., Bao, Z.L., Ren, H.Y., Wang, J.S., Dong, H.S.: Expression of HarpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. — Phytopathology 94: 1048–1055, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Pontier, D., Tronchet, M., Rogowsky, P., Lam, E., Roby, D.: Activation of hsr203, a plant gene expressed during incompatible plant-pathogen interactions, is correlated with programmed cell death. — Mol. Plant-Microbe Interact. 11: 544–554, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Schell, M.A.: Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. — Annu. Rev. Phytopathol. 38: 263–292, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Shah, J.: Plants under attack: systemic signals in defence. — Curr. Opin. Plant Biol. 12: 459–464, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Shao, M., Wang, J.S., Dean, R.A., Lin, Y.G., Gao, X.W., Hu, S.J.: Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. — Plant Biotechnol. J. 6: 73–81, 2008.

    CAS  PubMed  Google Scholar 

  • Shi, W.N., Hao, L.L., Li, J., Liu, D.D., Guo, X.Q., Li, H.: The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. — Plant Cell Rep. 33: 483–498, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Sohn, S., Kim, Y., Kim, B., Lee, S., Lim, C.K., Hur, J.H., Lee, J.: Transgenic tobacco expressing the hrpNEP gene from Erwinia pyrifoliae triggers defense responses against Botrytis cinerea. — Mol. Cells 24: 232–239, 2007.

    CAS  PubMed  Google Scholar 

  • Sonnewald, S., Priller, J.P.R., Schuster, J., Glickmann, E., Hajirezaei, M.R., Siebig, S., Mudgett, M.B., Sonnewald, U.: Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. — PLoS ONE 7: e51763, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi, H., Chen, Z., Du, H., Liu, Y., Klessig, D.F.: Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. — Plant J. 11: 993–1005, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, Y., Nagata, T.: parB: an auxin-regulated gene encoding glutathione S-transferase. — Proc. nat. Acad. Sci. USA 89: 56–59, 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ton, J., De Vos, M., Robben, C., Buchala, A., Métraux, J.P., Van Loon, L.C., Pieterse, C.M.: Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. — Plant J. 29: 11–21, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Torres, M.A., Jones, J.D.G., Dangl, J.L.: Reactive oxygen species signalling in response to pathogens. — Plant Physiol. 141: 373–378, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vlot, A.C., Dempsey, D.M.A., Klessig, D.F.: Salicylic acid, a multifaceted hormone to combat disease. — Annu. Rev. Phytopathol. 47: 177–206, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Cao, J., Wang, T.T., Zheng, L., Wang, C., Liu, H.X.: [Effect of PopW from Ralstonia solanacearum on inducing plants disease resistance.] — Chin. J. biol. Control 30: 79–85, 2014a. [In Chin.]

    Google Scholar 

  • Wang, C., Liu, H.X., Cao, J., Wang, C., Guo, J.H.: [Construction of transgenic tobacco expressing popW and analysis of its biological phenotype.] — Chin. J. Biotechnol. 30: 569–580, 2014b. [In Chin.]

    Google Scholar 

  • Wang, D., Wang, Y., Fu, M., Mu, S., Han, B., Ji, H., Cai, H., Dong, H., Zhang, C.: Transgenic expression of the functional fragment Hpa1(10-42) of the harpin protein Hpa1 imparts enhanced resistance to powdery mildew in wheat. — Plant Dis. 98: 448–455, 2014c.

    Article  CAS  Google Scholar 

  • Ward, E.R., Payne, G.B., Moyer, M.B., Williams, S.C., Dincher, S.S., Sharkey, K.C., Beck, J.J., Taylor, H.T., Ahl-Goy, P., Meins, F., Ryals, J.A.: Differential regulation of beta-1,3-glucanase messenger RNAs in response to pathogen infection. — Plant Physiol. 96: 390–397, 1991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei, Z.M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y., Collmer, A., Beer, S.V.: Harpin, elicitor of the hypersensitive response produced by the plant pathogen Ervinia amylovora. — Science 257: 85–88, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, S., Chye, M.L.: Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv. tomato DC3000. — Plant Physiol. 156: 2069–2081, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yao, J., Allen, C.: Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. — J. Bacteriol. 188: 3697–3708, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, L., Xiao, S., Li, W., Feng, W., Li, J., Wu, Z., Gao, X., Liu, F., Shao, M.: Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. — J. exp. Bot. 62: 4229–4238, 2011a.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, W., Yang, X., Qiu, D., Guo, L., Zeng, H., Mao, J., Gao, Q.: PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. — Mol. Biol. Rep. 38: 2549–2556, 2011b.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, L., Luo, Y.M., Xue, Q.Y., Li, S.M., Liu, H.X., Guo, J.H.: [Control and growth promotion of PopW to cucumber downy mildew under greenhouse and field conditions.] — Acat. phytopathol. sin. 43: 179–186, 2013. [In Chinese]

    Google Scholar 

  • Zipfel, C.: Early molecular events in PAMP-triggered immunity. — Curr. Opin. Plant Biol. 12: 414–420, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. -X. Liu.

Additional information

Acknowledgments: This research was supported by the National Natural Science Foundation of China (31371925 and 31571992). The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, C., Li, H.W. et al. Overexpression of a harpin-encoding gene popW in tobacco enhances resistance against Ralstonia solanacearum . Biol Plant 60, 181–189 (2016). https://doi.org/10.1007/s10535-015-0571-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0571-5

Additional key words

Navigation