Skip to main content
Log in

Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effects of proline and/or glycine betaine (GB) application on growth, photosynthetic pigments, H2O2 content, and activities of antioxidant enzymes in rice (Oryza sativa L. cv. KDML105) under salt stress were investigated. The H2O2 content and the activities of superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) but not catalase (CAT) increased under salinity. Under 160 mM NaCl, the CAT activity was maintained on the pre-stress level in the presence of proline, whereas in the presence of GB, the GR activity increased more than without GB application. A co-application of 30 mM proline and 1 mM GB did not reduce the increase in H2O2 caused by the NaCl stress more than applying each of the osmoprotectants and no synergistic effect on the antioxidant enzymes was observed. However, the application of both the osmoprotectants was the most effective in alleviating degradation of photosynthetic pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase (EC 1.11.1.11)

CAT:

catalase (EC 1.11.1.6)

GB:

glycinebetaine

GR:

glutathione reductase (EC 1.6.4.2)

GSSG:

oxidized glutathione

H2O2 :

hydrogen peroxide

ROS:

reactive oxygen species

SOD:

superoxide dismutase (EC 1.15.1.1)

References

  • Aebi, H.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis, 2nd Ed. Vol. 2. Pp. 673–677. Academic Press, New York — London 1974.

    Chapter  Google Scholar 

  • Ali, Q., Ashraf, M., Athar, H.R.: Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. — Pak. J. Bot. 39: 1133–1144, 2007.

    Google Scholar 

  • Alscher, R.G., Hess, J.L.: Antioxidants in Higher Plants. — CRC Press, Boca Raton 1993.

    Google Scholar 

  • Anjum, S.A., Farooq, M., Wang, L.C., Xue, L.L., Wang, S.G., Wang, L., Zhang, S., Chen, M.: Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously-applied glycinebetaine under drought conditions. — Plant Soil Environ. 57: 326–331, 2011.

    CAS  Google Scholar 

  • Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Arnon, D.I.: Copper enzyemes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beadle, C.L.: Growth analysis. — In: Hall, D.O., Bolhár Nordenkampf, H.R., Leegood, R.C. (ed.): Photosysthesis and Production in a Changing Environment: a Field and Laboratory Manual. Pp. 36–46. Chapman & Hall, London 1993.

    Google Scholar 

  • Bohnert, H.J., Jensen, R.G.: Strategies for engineering water stress tolerance in plants. — Trends Biotechnol. 14: 89–97, 1996.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the qualitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Cha-Um, S., Kirdmanee, C.: Effect of glycinebetaine on proline, water use and photosynthetic efficiencies and growth of rice seedlings under salt stress. — Turk. J. Agr. Forest. 34: 517–527, 2010.

    CAS  Google Scholar 

  • Cha-Um, S., Samphumphuang, T., Kirdmanee, C.: Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. — Aust. J. Crop Sci. 7: 213–218, 2013.

    CAS  Google Scholar 

  • Chen, T.H.H., Murata, N.: Glycinebetaine: an effective protectant against abiotic stress in plants. — Trends Plant Sci. 13: 499–505, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Dat, J.F., Foyer, C.H., Scott, I.M.: Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. — Plant Physiol. 118: 1455–1461, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deivanai, S., Xavier, R., Vinod, V., Timalata, K., Lim, O.F.: Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. — J. Physiol. Biochem. 7: 157–174, 2011.

    Google Scholar 

  • Demiral, T., Türkan, I.: Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. — Environ. exp. Bot. 56: 72–79, 2006.

    Article  CAS  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 126: 93–101, 1981.

    Article  Google Scholar 

  • Ehsanpour, A.A., Fatahian, N.: Effects of salt and proline on Medicago sativa callus. — Plant Cell Tissue Organ Cult. 73: 53–56, 2003.

    Article  CAS  Google Scholar 

  • Farooq, M., Basra, S.M.A., Wahid, A., Cheema, Z.A., Cheema, M.A., Khaliq, A.: Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). — J. Agron. Crop Sci. 194: 325–333, 2008.

    Article  CAS  Google Scholar 

  • Flowers, T.J., Troke, P.F., Yeo, A.R.: The mechanism of salt tolerance in halophytes. — Annu. Rev. Plant Physiol. 28: 89–121, 1977.

    Article  CAS  Google Scholar 

  • Greenway, H., Munns, R.: Mechanisms of salt tolerance in nonhalophytes. — Annu. Rev. Plant Physiol. 31: 149–190, 1980.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M.A., Fujita, M.: Seleniuminduced upregulation of the antioxidant defense and methylglyoxal detoxification system reduces salinityinduced damage in rapeseed seedlings. — Biol. Trace Element Res. 143: 1704–1721, 2011.

    Article  CAS  Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463–499, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A.: Role of proline under changing environments. — Plant Signal. Behav. 7: 1456–1466, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez, J.A., Alamansa, M.S.: Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. — Physiol. Plant. 115: 251–257, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hoque, M.A., Banu, M.N., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y., Murata, Y.: Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. — J. Plant Physiol. 164: 1457–1468, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Hoque, M.A., Okuma, E., Banu, N.A., Nakamura, Y., Shimoishi, Y., Murata, Y.: Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. — J. Plant Physiol. 164: 553–561, 2006.

    Article  PubMed  Google Scholar 

  • Hossain, M.A., Hasanuzzaman, M., Fujita, M.: Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. — Front Agr. China 5: 1–14, 2011.

    Article  Google Scholar 

  • Jana, S., Choudhuri, M.A.: Glycolate metabolism of three submerged aquatic angiosperms during aging. — Aquat. Bot. 12: 345–354, 1981.

    Article  Google Scholar 

  • Kong-ngern, K., Bunnag, S., Theerakulpisut, P.: Proline, hydrogen peroxide, membrane stability and antioxidant enzyme activity as potential indicators for salt tolerance in rice (Oryza sativa L.) — Int. J. Bot. 8: 54–65, 2012.

    Article  Google Scholar 

  • Kumar, V., Sharma, R.D.: Effect of exogenous proline on growth and ion content in NaCl stressed and nonstressed cells of mungbean, Vigna radiata var. radiata. — Indian J. exp. Biol. 27: 813–815, 1989.

    CAS  Google Scholar 

  • Lee, H.D., Kim, Y.S., Lee, C.B.: The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). — J. Plant Physiol. 158: 735–745, 2001.

    Article  Google Scholar 

  • Li, L., Qu, R., De Koch, A., Fauquet, C.M., Beachy, R.N.: An improved rice transformation method using the biolistic method. — Plant Cell Rep. 12: 250–255, 1993.

    Article  PubMed  Google Scholar 

  • Limpinuntana, V.: Physiological aspects of adaptation of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) to low oxygen concentrations in the root environment. — Ph.D. Thesis, Chulalongkorn University, Bangkok 1978.

    Google Scholar 

  • Ma, Q.Q., Wang, W., Li, Y.H., Li, D.Q., Zou, Q.: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum L.) by foliar-applied glycinebetaine. — J. Plant Physiol. 163: 165–175, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Makela, P., Kontturib, M., Pehua, E., Somersaloa, S.. Photosynthetic response to drought and salt stressed tomato and turnip rape plants to foliar applied glycinebetaine. — Physiol. Plant. 105: 45–50, 2002.

    Article  Google Scholar 

  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. — Plant Cell Environ. 33: 453–467, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Mittova, V., Tal, M., Volokita, M., Guy, M.: Up-regulation of the leaf mitochondria1 and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. — Plant Cell Environ. 26: 845–856, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed, A.R., Tarpley, L. Characterization of rice (Oryza sativa L.) physiological responses to α-tocopherol, glycine betaine or salicylic acid application. — J. agr. Sci. 3: 3–13, 2011.

    Google Scholar 

  • Nagano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    Google Scholar 

  • Rahman, S.M., Miyake, H., Takeoka, Y.: Effects of exogenous glycinebetaine on growth and ultrastructure of salt stressed rice seedlings (Oryza sativa L.) — Plant Product. Sci. 5: 33–44, 2002.

    Article  CAS  Google Scholar 

  • Raza, S.H., Athar, H.R., Ashraf, M.: Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. — Pak. J. Bot. 38: 341–351, 2006.

    Google Scholar 

  • Reddy, M.P., Vora, A.B.: Changes in pigment composition, Hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. — Photosynthetica 20: 50–55, 1986.

    CAS  Google Scholar 

  • Rhodes, D., Hanson, A.D.: Quaternary ammonium and tertiary sulfonium compounds in higher plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 357–384. 1993.

    Article  CAS  Google Scholar 

  • Roy, D., Basu, N., Bhunia, A., Banerjee, S.K.: Counteration of exogenous L-proline with NaCl in salt-sensitive cultivar of rice. — Biol. Plant 35: 69–72, 1993.

    Article  CAS  Google Scholar 

  • Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C.: Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. — Biol. Plant 49: 85–91, 2005.

    Article  CAS  Google Scholar 

  • Sekmen, A.H., Türkan, I., Takio, S.: Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. — Physiol. Plant 131: 399–411, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Serraj, R., Sinclair, T.R.: Osmolyte accumulation: can it really help increase crop yield under drought conditions? — Plant Cell Environ. 25: 333–341, 2002.

    Article  PubMed  Google Scholar 

  • Sharma, P.K., Hall, D.O.: Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. — J. Plant Physiol. 138: 614–619, 1991.

    Article  CAS  Google Scholar 

  • Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. — Phytochemistry 28: 1057–1060, 1989.

    Article  CAS  Google Scholar 

  • Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). — Anal. Biochem. 175: 408–413, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Sobahan, M.A., Akter, N., Ohno, M., Okuma, E., Hirai, Y., Mori, I.C., Nakamura, Y, Murata, Y.: Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. — Biosci. Biotechnol. Biochem. 76: 1568–1570, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Sobahan, M.A, Arias, C.R., Okuma, E., Shimoishi, Y., Nakamura, Y., Hirai, Y., Mori, I.C., Murata, Y.: Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na+ uptake in rice seedlings. — Biosci. Biotechnol. Biochem. 73: 2037–2042, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Wani, S.H., Singh, N.B., Haribhushan, A., Mir, J.I.: Compatible solute engineering in plants for abiotic stress tolerance role of glycine betaine. — Curr. Genomics 14: 157–165, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wanchananan, P., Kirdmanee, C., Vutlyano, C.: Effect of salinity on biochemical and physiological characteristics in correlation to selection of salt-tolerance in aromatic rice (Oryza sativa L.). — Sci. Asia 29: 333–339, 2003.

    Article  Google Scholar 

  • Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N.: Living with water stress: evolution of osmolyte systems. — Science 217: 1214–1222, 1982.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.K.: Salt and drought stress signal transduction in plants. — Annu. Rev. Plant Biol. 53: 247–273, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Wutipraditkul.

Additional information

Acknowledgments: This work was supported by the research group “Special Task Force for Activating Research (STAR): Biochemical and Molecular Mechanisms of Rice in Changing Environments” by the Ratchadaphiseksompot Endowment Fund, Chulalongkorn University and Thailand Research Fund IRG578008. We thank Dr. Supa-art Sirikantaramas for the valuable guidance and Miss Taviporn Kaewneramit for support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wutipraditkul, N., Wongwean, P. & Buaboocha, T. Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine. Biol Plant 59, 547–553 (2015). https://doi.org/10.1007/s10535-015-0523-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0523-0

Additional key words

Navigation