Skip to main content
Log in

The responses of germinating seedlings of green peas to copper oxide nanoparticles

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The effects of copper oxide nanoparticles (CuONPs) on germinating seedlings of green pea (Pisum sativum L.) were studied. The seedlings were grown in a half-strength Murashige and Skoog semisolid medium containing 0, 50, 100, 200, 400, and 500 mg dm−3 CuONPs for 14 d under controlled growth chamber conditions. Exposures to 100, 200, 400, and 500 mg dm−3 CuONPs significantly reduced plant growth (shoot and root lengths) and increased reactive oxygen species (ROS) generation and lipid peroxidation. Gene expression study using real-time polymerase chain reaction showed no significant change in the expression of genes coding CuZn-superoxide dismutase (CuZnSOD), catalase (CAT), and ascorbate peroxidase (APX) in shoots. However in roots, a significant increase in the expression of the CuZnSOD gene was observed under the exposures to 100, 200, 400, and 500 mg dm−3 CuONPs, in the expression of the CAT gene under 100 and 200 mg dm−3 CuONPs, and in the expression of APX under 200 and 400 mg dm−3 CuONPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

CuONPs:

copper oxide nanoparticles

CuZnSOD:

CuZn-superoxide dismutase

HPF:

3′-hydroxyphenyl flourescein

ICP-AES:

inductively coupled plasma-atomic emission spectrophotometry

MS:

Murashige and Skoog

NBT:

nitroblue tetrazolium

PCR:

polymerase chain reaction

ROS:

reactive oxygen species

References

  • Bowler, C., Van Montagu, M., Inzé, D.: Superoxide dismutase and stress tolerance. — Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 83–116, 1992.

    Article  CAS  Google Scholar 

  • Fryer, M.J., Oxborough, K., Mullineaux, P.M., Baker, N.R.: Imaging of photooxidative stress responses in leaves. — J. exp. Bot. 53: 1249–1254, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J., Rico, C.M., Zhao, L., Adeleye, A.S., Keller, A.A., Peralta-Videa, J.R., Gardea-Torresdey, J.L.: Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). — Environ. Sci. Processes Impacts 23:177–185, 2015.

    Article  Google Scholar 

  • Kwasniewski, M., Chwialkowski, K., Kwasniewska, J., Kusak, J., Siwinski, K., Szarejko, I.: Accumulation of peroxidaserelated reactive oxygen species in trichoblasts correlates with root hair initiation in barley. — J. Plant Physiol. 170: 185–195, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W.M., An, Y.J., Yoon, H., Kweon, H.S.: Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. — Environ. Toxicol. Chem. 27: 1915–1921, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lin, D., Xing, B.: Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.— Environ. Pollut. 150: 243–250, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec, W., Russa, R., Urbanik-Sypniewska, T., Baszynski, T.: Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. — Physiol. Plant. 91: 715–721, 1994.

    Article  CAS  Google Scholar 

  • Melegari, S.P., Perreault, F., Popovic, R.H.R.C., Radovan, Matias, W.G.: Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. — Aquat. Toxicol. 142–143: 431–440, 2013.

    Article  PubMed  Google Scholar 

  • Nair, P.M.G., Chung, I.M.: Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification and molecular level changes. — Environ. Sci. Pollut. Res. 21: 12709–12722, 2014.

    Article  CAS  Google Scholar 

  • Pätsikkä, E., Kairavuo, M., Šeršen, F., Aro, E.M., Tyystjärvi, E.: Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. — Plant Physiol. 129: 1359–1367, 2002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., Watkins, C.B.: Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2 — metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. — Plant Physiol. 115: 137–149, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandmann, G., Boger, P.: Copper-mediated lipid peroxidation processes in photosynthetic membranes. — Plant Physiol. 66: 797–800, 1980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw, A.K., Ghosh, S., Kalaji, H.M., Bosa, K., Brestic, M., Zivcak, M., Hossain, Z.: Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of syrian barley (Hordeum vulgare L.). — Environ. Exp. Bot. 102: 37–47, 2014.

    Article  CAS  Google Scholar 

  • Shaw, A.K., Hossain, Z.: Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. — Chemosphere 93: 906–915, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Peng, C., Yang, Y., Yang, J., Zhang, H., Yuan, X., Chen, Y., Hu, T.: Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elshotzia spendens. — Nanotoxicology 8: 179–188, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis, D., Sinha, S.K., White, J.C.: Assay-dependent phytotoxicity of nanoparticles to plants. — Environ. Sci. Technol. 43: 9473–9479, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Takeshi, M., Sook, M.L., Noriyuki, S., Takakiro, I.: Identification of S100b protein as copper-binding protein and its suppression of copper-induced cell damage. — J. biol. Chem. 272: 23037–23041, 1997.

    Article  Google Scholar 

  • Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J.C., Xing, B.: Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.). — Environ. Sci. Technol. 46: 4434–4441, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S.G., Huang, L., Head, J., Chen, D.R., Kong, I.C., Tang, Y.J.: Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. — J. Petroleum Environ. Biotechnol. 3: 126, 2012.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Chung.

Additional information

Acknowledgements: This paper was supported by the KU Research Professor Program of the Konkuk University, Seoul, South Korea, and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2014R1A2A2A01002202).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, P.M.G., Chung, I.M. The responses of germinating seedlings of green peas to copper oxide nanoparticles. Biol Plant 59, 591–595 (2015). https://doi.org/10.1007/s10535-015-0494-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0494-1

Additional key words

Navigation