Skip to main content
Log in

Ex vitro acclimatization of plantain plantlets micropropagated in temporary immersion bioreactor

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Plantain (Musa ABB CEMSA 3/4) plantlets were micropropagated in temporary immersion bioreactors (TIB) or in gelled medium (GM). After ex vitro transfer ROS accumulation was determined by infiltrating leaves with nitroblue tetrazolium (NBT) and 3,3′-diaminobenzidine (DAB). Stomatal cells were more stained with NBT and DAB in GM plants than in TIB plants, but the difference disappeared at the end of acclimatization. At the end of the in vitro phase, GM plantlets showed higher activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR), while activities of catalase (CAT), superoxide dismutase (SOD) and glutathione transferase (GT) were higher in TIB grown plantlets. At the end of acclimatization GT, SOD, CAT and MDHAR stabilized at low values of activity in plantlets derived from both treatments. Concerning the correspondent genes, GM plantlets showed higher expression of all transcripts with the exception of CuZnSOD. The immunobloting of peroxiredoxins (PRXs) showed that chloroplast-located PRXs were expressed at higher levels in TIB plantlets, some showing polymerization. In conclusion, TIB grown plantlets had an improved anti-oxidative response when compared with GM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase (EC 1.11.1.11)

BA:

6-benzylaminopurine

CAT:

catalase (EC 1.11.1.6)

DAB:

3,3′-diaminobenzidine

DHAR:

dehydroascorbate reductase (EC 1.8.5.1)

GM:

gelled medium

GR:

glutathione reductase (EC 1.6.4.2)

GT:

glutathione transferase (EC 2.5.1.18)

MDHAR:

monodehydroascorbate reductase (EC 1.6.5.4)

MS:

Murashige and Skoog medium

NBT:

nitroblue tetrazolium

PPFD:

photosynthetic photon flux density

PRX:

peroxiredoxin

ROS:

reactive oxygen species

SOD:

superoxide dismutase (EC 1.15.1.1)

TIB:

temporary immersion bioreactor

References

  • Alscher, R., Erturk, N., Heath, L.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plantlets. — J. exp. Bot. 372: 1331–1341, 2002.

    Article  Google Scholar 

  • Anderson, M., Prasad, T., Stewart, C.: Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. — Plant Physiol. 109: 1247–1257, 1995.

    PubMed  CAS  Google Scholar 

  • Aragón, C.E., Escalona, M., Capote, I., Pina, D., Cejas, I., Rodríguez, R., Cañal, M.J., Sandoval, J., Roels, S., Debergh, P., González-Olmedo, J.L.: Photosynthesis and carbon metabolism in plantain (Musa AAB) growing in temporary immersion bioreactor (TIB) and ex vitro acclimatization. — In vitro cell. dev. Biol. Plant. 41: 550–554, 2005.

    Article  CAS  Google Scholar 

  • Arrigoni, O., Dipierro, S.E., Borraccino, G.: Ascorbate free radical reductase: a key enzyme of the ascorbic acid system. — FEBS Lett. 125: 242–244, 1981.

    Article  CAS  Google Scholar 

  • Ba’ková, P., Pospíšilová, J., Synková, H.: Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. — Biol. Plant. 52: 413–422, 2008.

    Article  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, L.C., Osório, M.L., Chaves, M.M., Amâncio, S.: Chlorophyll fluorescence as an indicator of photosynthetic competence of in vitro grapevine and chestnut under acclimatization. — Plant Cell Tissue Org. Cult. 67: 271–280, 2001.

    Article  Google Scholar 

  • Carvalho, L.C., Santos, P., Amâncio, S.: Effects of light intensity and CO2 concentration on growth and the acquisition of in vivo characteristics during acclimatization of grapevine regenerated in vitro. — Vitis 41: 1–6, 2002.

    Google Scholar 

  • Carvalho, L.C., Santos, S., Vilela, B.J., Amâncio, S.: Solanum lycopersicon Mill. and Nicotiana benthamiana L. under high light show distinct responses to anti-oxidative stress. — J. Plant Physiol. 165: 1300–1312, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, L.C., Vilela, B.J., Vidigal, P., Mullineaux, P.M., Amâncio, S.: Activation of the ascorbate-glutathione cycles is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro. — Int. J. Plant Sci. 167: 759–770, 2006.

    Article  CAS  Google Scholar 

  • Chang, S., Puryear, J., Cairney, J.: A simple and efficient method for isolating RNA from pine trees. — Plant mol. Biol. Rep. 11: 113–116, 1993.

    Article  CAS  Google Scholar 

  • Dalton, D., Baird, L., Langeberg, L., Taughet, C., Anyan, W., Vance, C., Sarath, G.: Subcellular localization of oxygen defence 21 enzymes in soybean (Glycine max L. Merr.) root nodules. — Plant Physiol. 102: 481–489, 1993.

    PubMed  CAS  Google Scholar 

  • Desikan, R., Cheung, M., Bright, J., Henson, D., Hancock, J., Neill, S.: ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. — J. exp. Bot. 55: 205–212, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Dietz, K.J.: Plant peroxiredoxins. — Annu. Rev. Plant Biol. 54: 93–107, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, J., Okpodu, C., Cramer, C., Grabau, E., Alscher, R.: Responses of antioxidants to paraquat in pea leaves: relationships to resistance. — Plant Physiol. 113: 249–257, 1997.

    PubMed  CAS  Google Scholar 

  • Drotar, A., Phelps, P., Fall, R.: Evidence for glutathione peroxidase activities in cultured plant cells. — Plant Sci. 42: 35–40, 1985.

    Article  CAS  Google Scholar 

  • Escalona, M., Samson, G., Borroto, C., Desjardins, Y.: Physiology of the effects of temporary immersion bioreactors on micropropagated pineapple plantlets. — In Vitro cell. dev. Biol. Plant. 39: 651–656, 2003.

    Article  CAS  Google Scholar 

  • Ferreira, R., Franco, E., Teixeira, A.: Covalent dimerization of ribulosebisfosphate carboxylase subunits by UV radiation. — Biochem. J. 318: 227–234, 1996.

    PubMed  CAS  Google Scholar 

  • Fryer, M., Oxborough, K., Mullineaux, P., Baker, N.: Imaging of photoxidative stress responses in leaves. — J. exp. Bot. 53: 1249–1254, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hossain, M., Asada, A.: Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate. — Plant Cell Physiol. 25: 1285–1295, 1984.

    CAS  Google Scholar 

  • Jackson, M., Abbott, A., Belcher, A., Hall, K., Butler, R., Cameron, J.: Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. — Ann. Bot. 67: 229–237, 1991.

    CAS  Google Scholar 

  • Jacobs, A., Dry, I., Robinson, S.: Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. — Plant Pathol. 48: 325–336, 1999.

    Article  CAS  Google Scholar 

  • Kitto, S.L.: Commercial micropropagation. — HortScience 32: 1012–1014, 1997.

    Google Scholar 

  • König, J., Baier, M., Horling, F., Kahmann, U., Harris, G., Schürmann, P., Dietz, K.-J.: The plant-specific function of 2-cys-peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. — PNAS 99: 5738–5743, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kwak, J.M., Nguyen, V., Schroeder, J.I.: The role of reactive oxygen species in hormonal responses. — Plant Physiol. 141: 323–329, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 227: 680–685, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo, J., Blanco, M., Peláez, O., González, A., Cid, M., Iglesias, A., González, B., Escalona, M., Espinosa, P., Borroto, C.: Sugarcane micropropagation and phenolic excretion. — Plant Cell Tissue Organ Cult. 65: 1–8, 2001.

    Article  CAS  Google Scholar 

  • McCord, J., Fridovich, I.: Superoxide dismutase: an enzymic function for erythrocuprein. — J. Inorg. Biochem. 244: 6049–6055, 1969.

    CAS  Google Scholar 

  • Mokbel, M.S., Hashinaga, F.: Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruit peels. — Amer. J. Biochem. Biotechnol. 1: 126–132, 2005.

    Google Scholar 

  • Mullineaux, P.M., Karpinski, S., Baker, N.: Spatial dependence for hydrogen peroxide-directed signalling in light stressed plants. — Plant Physiol. 141: 346–350, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Rao, M.V., Paliyath, G., Ormrod, D.P.: Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. — Plant Physiol. 110: 125–136, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Schaedle, M., Bassham, J.: Chloroplast glutathione reductase. — Plant Physiol. 59: 1011–1012, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Shao, H., Chu, L., Lu, Z., Kang, C.: Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. — Int. J. biol. Sci. 4: 8–14, 2008.

    CAS  Google Scholar 

  • Ślesak, I., Libik, M., Karpinska, B., Karpinski, S., Miszalski, Z.: The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. — Acta Biochim. Pol. 54: 39–50, 2007.

    PubMed  Google Scholar 

  • Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N., Hasezawa, S.: Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. — Plant Physiol. 138: 2337–2343, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Van Huylenbroeck, J.M., Piqueras, A., Deberg, P.C.: The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. — Plant Sci. 135: 59–66, 2000.

    Article  Google Scholar 

  • Vilela, J., Carvalho, L.C., Ferreira, J., Amâncio, S.: Gain of function of stomatal movements in rooting Vitis vinifera L. plantlets: regulation by H2O2 is independent of ABA before the protruding of roots. — Plant Cell Rep. 26: 2149–2157, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wangwattana, B., Koyama, Y., Nishiyama, Y., Kitayama, M.: Characterization of PAP1-upregulated glutathione Stransferase genes in Arabidopsis thaliana. — Plant Biotechnol. 25: 191–196, 2008.

    CAS  Google Scholar 

Download references

Acknowledgements

To the program Alban, scholarship number E06D100217CU (C.A), to “Fundação para a Ciência e Tecnologia”, co-financed by FEDER for post-doc grant SFRH/BPD/5707/2001 (L.C.) and “Plurianual” funds to CBAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amâncio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragón, C., Carvalho, L., González, J. et al. Ex vitro acclimatization of plantain plantlets micropropagated in temporary immersion bioreactor. Biol Plant 54, 237–244 (2010). https://doi.org/10.1007/s10535-010-0042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0042-y

Additional key words

Navigation