Skip to main content
Log in

Evidence for a role for the putative Drosophila hGRX1 orthologue in copper homeostasis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Glutaredoxins are a family of small molecular weight proteins that have a central role in cellular redox regulation. Human GRX1 (hGRX1) has also been shown to play an integral role in copper homeostasis by regulating the redox activity of the metalated sites of copper chaperones such as ATOX1 and SOD1, and the copper efflux proteins ATP7A and ATP7B. To further elucidate the role of hGRX1 in copper homeostasis, we examined the impact of RNA interference-mediated knockdown of CG6852, a putative Drosophila orthologue of hGRX1. CG6852 shares ~41 % amino acid identity with hGRX1 and key functional domains including the metal-binding CXXC motif are conserved between the two proteins. Knockdown of CG6852 in the adult midline caused a thoracic cleft and reduced scutellum, phenotypes that were exacerbated by additional knockdown of copper uptake transporters Ctr1A and Ctr1B. Knockdown of CG6852 in the adult eye enhanced a copper-deficiency phenotype caused by Ctr1A knockdown while ubiquitous knockdown of CG6852 resulted a mild systemic copper deficiency. Therefore we conclude that CG6852 is a putative orthologue of hGRX1 and may play an important role in Drosophila copper homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SOD1:

Superoxide dismutase 1

Cu:

Copper

BCS:

Bathocuproine disulfonate

PBS:

Phosphate buffered saline

COX:

Cytochrome c oxidase

PNR:

Pannier

GSH:

Glutathione

References

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64(5–6):1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Binks T, Lye JC, Camakaris J, Burke R (2010) Tissue-specific interplay between copper uptake and efflux in Drosophila. J Biol Inorg Chem 15(4):621–628

    Article  CAS  PubMed  Google Scholar 

  • Bouldin SD, Darch MA, Hart PJ, Outten CE (2012) Redox properties of the disulfide bond of human Cu, Zn superoxide dismutase and the effects of human glutaredoxin 1. Biochem J 446(1):59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brose J, La Fontaine S, Wedd AG, Xiao Z (2014) Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(i). Metallomics 6(4):793–808

    Article  CAS  PubMed  Google Scholar 

  • Camakaris J, Voskoboinik I, Mercer JF (1999) Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261(2):225–232

    Article  CAS  PubMed  Google Scholar 

  • Carroll MC, Girouard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci USA 101(16):5964–5969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cater MA, Materia S, Xiao Z, Wolyniec K, Ackland SM, Yap YW, Cheung NS, La Fontaine S (2014) Glutaredoxin1 protects neuronal cells from copper-induced toxicity. Biometals 27(4):661–672

    Article  CAS  PubMed  Google Scholar 

  • Cobine PA, Pierrel F, Winge DR (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim et Biophys Acta (BBA) Mol Cell Res 1763(7):759–772

    Article  CAS  Google Scholar 

  • Coppo L, Ghezzi P (2011) Thiol regulation of pro-inflammatory cytokines and innate immunity: protein S-thiolation as a novel molecular mechanism. Biochem Soc Trans 39(5):1268–1272

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43(6):883–898

    Article  CAS  PubMed  Google Scholar 

  • De Benedetto ML, Capo CR, Ferri A, Valle C, Polimanti R, Carrì MT, Rossi L (2014) Glutaredoxin 1 is a major player in copper metabolism in neuroblastoma cells. Biochim et Biophys Acta (BBA) General Subj 1840(1):255–261

    Article  Google Scholar 

  • Dinoto L, Deture MA, Purich DL (2005) Structural insights into Alzheimer filament assembly pathways based on site-directed mutagenesis and S-glutathionylation of three-repeat neuronal Tau protein. Microsc Res Tech 67(3–4):156–163

    Article  CAS  PubMed  Google Scholar 

  • Domenico FD, Cenini G, Sultana R, Perluigi M, Uberti D, Memo M, Butterfield DA (2009) Glutathionylation of the pro-apoptotic protein p53 in Alzheimer’s disease brain: implications for AD pathogenesis. Neurochem Res 34(4):727–733

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J, Emmert DB, Gelbart WM (2014) FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res 43(D1):D690–D697

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Fratelli M, Gianazza E, Ghezzi P (2004) Redox proteomics: identification and functional role of glutathionylated proteins. Expert Rev Proteom 1(3):365–376

    Article  CAS  Google Scholar 

  • Hatori Y, Clasen S, Hasan NM, Barry AN, Lutsenko S (2012) Functional partnership of the copper export machinery and glutathione balance in human cells. J Biol Chem 287(32):26678–26687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffman DL, O’Halloran TV (2001) Function, Structure, and mechanism of intracellular copper trafficking proteins. Ann Rev Biochem 70(1):677–701

    Article  CAS  PubMed  Google Scholar 

  • Janssen-Heininger YMW, Aesif SW, Van Der Velden J, Guala AS, Reiss JN, Roberson EC, Budd RC, Reynaert NL, Anathy V (2010) Regulation of apoptosis through cysteine oxidation: implications for fibrotic lung disease. Ann N Y Acad Sci 1203(1):23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaim W, Rall J (1996) Copper—a “modern” bioelement. Angew Chem Int Ed Engl 35(1):43–60

    Article  CAS  Google Scholar 

  • Klinman JP (2005) The copper-enzyme family of dopamine-monooxygenase and peptidylglycine-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J Biol Chem 281(6):3013–3016

    Article  PubMed  Google Scholar 

  • Lillig CH, Berndt C (2013) Glutaredoxins in thiol/disulfide exchange. Antioxid Redox Signal 18(13):1654–1665

    Article  CAS  PubMed  Google Scholar 

  • Lim CM, Cater MA, Mercer JFB, La Fontaine S (2006) Copper-dependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases. Biochem Biophys Res Commun 348(2):428–436

    Article  CAS  PubMed  Google Scholar 

  • Linder MC (2002) Biochemistry and molecular biology of copper in mammals. Handbook of copper pharmacology and toxicology. Springer Science + Business Media, Berlin, pp 003–032

    Google Scholar 

  • Luk E, Jensen LT, Culotta VC (2003) The many highways for intracellular trafficking of metals. J Biol Inorg Chem 8(8):803–809

    Article  CAS  PubMed  Google Scholar 

  • Maehara M, Ogasawara N, Mizutani N, Watanabe K, Suzuki S (1983) Cytochrome c oxidase deficiency in menkes kinky hair disease. Brain Dev 5(6):533–540

    Article  CAS  PubMed  Google Scholar 

  • Maryon EB, Molloy SA, Kaplan JH (2013) Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. AJP Cell Physiol 304(8):C768–C779

    Article  CAS  Google Scholar 

  • Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid Redox Signal 16(6):471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman SF, Sultana R, Perluigi M, Coccia R, Cai J, Pierce WM, Klein JB, Turner DM, Butterfield DA (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J Neurosci Res 85(7):1506–1514

    Article  CAS  PubMed  Google Scholar 

  • Norgate M (2005) Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol Biol Cell 17(1):475–484

    Article  PubMed  Google Scholar 

  • Shelton MD, Chock PB, Mieyal JJ (2005) Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7(3–4):348–366

    Article  CAS  PubMed  Google Scholar 

  • Singleton WCJ, McInnes KT, Cater MA, Winnall WR, McKirdy R, Yu Y, Taylor PE, Ke BX, Richardson DR, Mercer JFB, La Fontaine S (2010) Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B. J Biol Chem 285(35):27111–27121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southon A, Burke R, Norgate M, Batterham P, Camakaris J (2004) Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J 383(2):303–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southon A, Palstra N, Veldhuis N, Gaeth A, Robin C, Burke R, Camakaris J (2010) Conservation of copper-transporting P(IB)-type ATPase function. Biometals 23(4):681–694

    Article  CAS  PubMed  Google Scholar 

  • Turski ML, Thiele DJ (2007) Drosophila Ctr1A functions as a copper transporter essential for development. J Biol Chem 282(33):24017–24026

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. CMC 12(10):1161–1208

    Article  CAS  Google Scholar 

  • Walker JM (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277(31):27953–27959

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Cadigan KM, Thiele DJ (2003) A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. J Biol Chem 278(48):48210–48218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Project Grant funding from the National Health and Medical Research Council of Australia (RB, Project Grant #606609). The Australian Drosophila Biomedical Research Support Facility assisted in the import and quarantine of fly strains used in this research. All transgenic Drosophila experiments carried out in this research were performed with the approval of the Monash University Institutional Biosafety Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Mercer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10534_2016_9946_MOESM1_ESM.tif

Figure S1. CG6852 RNAi line effectively decreases CG6852 transcript levels. Weak ubiquitous RNAi-mediated suppression of CG6852 using DA-GAL4 (DA>CG6852RNAi) significantly decreased CG6852 expression levels compared with wild type (DA>w1118). n≥3, *** p-value <0.001. 1-3: DA>CG6852RNAi, CG6852 primer pair. 4-6: DA>w1118, CG6852 primer pair. 7: DA>CG6852RNAi, RP49 primer pair. 8: DA>w1118, RP49 primer pair. (TIFF 8180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercer, S.W., Burke, R. Evidence for a role for the putative Drosophila hGRX1 orthologue in copper homeostasis. Biometals 29, 705–713 (2016). https://doi.org/10.1007/s10534-016-9946-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9946-0

Keywords

Navigation