Skip to main content
Log in

Analysis of the binding of bovine and human fibrinogen to ferritin: evidence that fibrinogen is a common ferritin-binding protein in mammals

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Both human and horse fibrinogen are heme-binding proteins, and horse fibrinogen also exhibits heme-mediated ferritin binding. This study found that bovine and human fibrinogen are heme-mediated ferritin-binding proteins and demonstrated direct binding of bovine ferritin to protoporphyrin (PPIX) and its derivatives or to Zn ions. Binding of bovine and human fibrinogen to bovine spleen ferritin coated on microtiter plate wells was detected using an anti-human fibrinogen antibody, and this binding was inhibited in a dose-dependent manner by hemin (iron-PPIX) and also inhibited by Zn-PPIX. PPIX showed less of an inhibitory effect on the binding of bovine and human fibrinogen to bovine ferritin. The inhibitory effect of Sn-PPIX was similar to that of PPIX, but with respect to human fibrinogen, PPIX did not inhibit the binding of human fibrinogen to ferritin. Bovine fibrinogen immobilized on CNBr-activated Sepharose 4B beads showed affinity for hemin, Sn-PPIX, Zn-PPIX, and iron-free PPIX in the order Sn-PPIX < iron-free PPIX < hemin < Zn-PPIX. The fibrinogen beads also directly bound to zinc ions. These results suggest that bovine fibrinogen is a heme- and zinc-binding protein and that binding of circulating mammalian fibrinogen to ferritin is heme mediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altieri DC, Mannuccio PM, Capitanio AM (1986) Binding of fibrinogen to human monocytes. J Clin Invest 78:968–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrera V, Skorokhod OA, Baci D, Gremo G, Arese P, Schwarzer E (2011) Host fibrinogen stably bound to hemozoin rapidly activates monocytes via TLR-4 and CD11b/CD18-integrin: a new paradigm of hemozoin action. Blood 117:5674–5682

    Article  CAS  PubMed  Google Scholar 

  • Crichton RR, Soruco JA, Roland F, Michaux MA, Gallois B, Precigoux G, Mahy JP, Mansuy D (1997) Remarkable ability of horse spleen ferritin to demetallate hemin and to metallate protoporphyrin IX as a function of pH. Biochemistry 36:15049–15054

    Article  CAS  PubMed  Google Scholar 

  • Dang CV, Bell WR, Shuman M (1989) The normal and morbid biology of fibrinogen. Am J Med 87:567–576

    Article  CAS  PubMed  Google Scholar 

  • Drummond GS, Kappas A (1981) Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc Natl Acad Sci USA 78:6466–6470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafson EJ, Lukasiewicz H, Wachtfogel YT, Norton KJ, Schmaier AH, Niewiarowski S, Colman RW (1989) High molecular weight kininogen inhibits fibrinogen binding to cytoadhesins of neutrophils and platelets. J Cell Biol 109:377–387

    Article  CAS  PubMed  Google Scholar 

  • Han J, Seaman WE, Di X, Wang W, Willingham M, Torti FM, Torti SV (2011) Iron uptake mediated by binding of H-ferritin to the TIM-2 receptor in mouse cells. PLoS One 6:e23800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kammath S, Lip GYH (2003) Fibrinogen: biochemistry, epidemiology anbd determinants. Q J Med 96:711–729

    Article  Google Scholar 

  • Kaplan IV, Attaelmannan M, Levinson SS (2001) Fibrinogen is an antioxidant that protects β-lipoproteins at physiological concentrations in a cell free system. Atherosclerosis 158:455–463

    Article  CAS  PubMed  Google Scholar 

  • Labbè RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: a metabolite with a mission. Clin Chem 45:2060–2072

    PubMed  Google Scholar 

  • Lishko VK, Podolnikova NP, Yakubenko VP, Yakovlev S, Medved L, Yadav SP, Ugarova TP (2004) Multiple binding sites in fibrinogen for integrin αMβ2 (Mac-1). J Biol Chem 279:44897–44906

    Article  CAS  PubMed  Google Scholar 

  • Mark G (1988) Zinc binding to fibrinogen and fibrin. Arch Biochem Biophys 266:285–288

    Article  Google Scholar 

  • Massover WH (1994) α2-Macroglobulin: a ferritin-binding protein. Ann NY Acad Sci 737:468–471

    Article  CAS  PubMed  Google Scholar 

  • Morikawa K, Oseko F, Morikawa S (1994) H- and L-rich ferritins suppress antibody production, but not proliferation, of human B lymphocytes in vitro. Blood 83:737–743

    CAS  PubMed  Google Scholar 

  • Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904

    Article  CAS  PubMed  Google Scholar 

  • Mosesson MW, Siebenlist KR, Meh DA (2001) The structure and biological features of fibrinogen and fibrin. Ann NY Acad Sci 936:11–30

    Article  CAS  PubMed  Google Scholar 

  • Nakai M, Murata N, Yoda T, Yoshikawa Y, Watanabe K, Orino K (2011) Binding of mammalian and avian ferritins with biotinylated hemin: demonstration of preferential binding of the H subunit to heme. J Vet Med Sci 73:313–318

    Article  CAS  PubMed  Google Scholar 

  • Nielsen VG, Cohen JB, Malayaman SN, Nowak M, Vosseller K (2011) Fibrinogen is a heme-associated, carbon monoxide sensing molecule: a preliminary report. Blood Coagul Fibrinolysis 22:443–447

    Article  CAS  PubMed  Google Scholar 

  • Nowak P, Zbikowska HM, Ponczek M, Kolodziejczyk J, Wachowicz B (2007) Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced peroxynitrite: functional consequences. Thromb Res 121:163–174

    Article  CAS  PubMed  Google Scholar 

  • Olinescu RM, Kummerow FA (2001) Fibrinogen is an efficient antioxidant. J Nutr Biochem 12:162–169

    Article  CAS  PubMed  Google Scholar 

  • Orino K (2013) Functional binding analysis of human fibrinogen as an iron- and heme-binding protein. Biometals 26:789–794

    Article  CAS  PubMed  Google Scholar 

  • Orino K, Watanabe K (2008) Molecular, physiological and clinical aspects of the iron storage protein ferritin. Vet J 178:191–201

    Article  CAS  PubMed  Google Scholar 

  • Orino K, Yamamoto S, Watanabe K (1993) Fibrinogen as a ferritin-binding protein in horse plasma. J Vet Med Sci 55:785–787

    Article  CAS  PubMed  Google Scholar 

  • Prasada AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12:646–652

    Article  Google Scholar 

  • Riedel T, Suttnar J, Brynda E, Houska M, Medved L, Dyr JE (2011) Fibrinopeptides A and B release in the process of surface fibrin formation. Blood 117:1700–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu JK, Davalos D, Akassoglou K (2009) Fibrinogen signal transduction in the nervous system. J Thromb Haemost 7:151–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santambrogio P, Massover WH (1989) Rabbit serum alpha-2-macroglobulin binds to liver ferritin: association causes a heterogeneity of ferritin molecules. Br J Haematol 71:281–290

    Article  CAS  PubMed  Google Scholar 

  • Sassa S (2004) Why heme needs to be degraded to iron, biliverdin IXα, and carbon monoxide? Antioxid Redox Signal 6:819–824

    Article  CAS  PubMed  Google Scholar 

  • Sassa S (2006) Biological implications of heme metabolism. J Clin Biochem Nutr 38:138–155

    Article  CAS  Google Scholar 

  • Seki T, Kunichika T, Watanabe K, Orino K (2008) Apolipoprotein B binds ferritin by hemin-mediated binding: evidence of direct binding of apolipoprotein B and ferritin to hemin. Biometals 21:61–69

    Article  CAS  PubMed  Google Scholar 

  • Shacter E, Williams JA, Lim M, Levine RL (1994) Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay. Free Radic Biol Med 17:429–437

    Article  CAS  PubMed  Google Scholar 

  • Shacter E, Williams JA, Levine RL (1995) Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radic Biol Med 18:815–821

    Article  CAS  PubMed  Google Scholar 

  • Smith EB, Keen GA, Grant A, Stirk C (1990) Fate of fibrinogen in human arterial intima. Arteriosclerosis 10:263–275

    Article  CAS  PubMed  Google Scholar 

  • Stein TP, Leskiw MJ, Wallace HW (1978) Measurement of half-life of human plasma fibrinogen. Am J Physiol 234:E504–E510

    CAS  Google Scholar 

  • Takahashi K, Kondo T, Yoshikawa Y, Watanabe K, Orino K (2013) The presence of heat-labile factors interfering with binding analysis of fibrinogen with ferritin in horse plasma. Acta Vet Scand 55:70

    Article  PubMed Central  PubMed  Google Scholar 

  • Torti SV, Torti FM (1998) Human H-kininogen is a ferritin-binding protein. J Biol Chem 273:13630–13635

    Article  CAS  PubMed  Google Scholar 

  • Undas A (2014) Fibrin clot properties and their modulation in thrombotic disorders. Thromb Haemost 112:32–42

    Article  CAS  PubMed  Google Scholar 

  • Undas A, Ariënce RAS (2011) Fibrin clot structure and function. A role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 31:e88–e89

    Article  CAS  PubMed  Google Scholar 

  • Watt RK (2011) The many faces of the octahedral ferritin protein. Biometals 24:489–500

    Article  CAS  PubMed  Google Scholar 

  • Yildiz H, Kayagusuzoglu E (2005) Investigation of Ca, Zn, Mg, Fe and Cu concentrations in blood and milk of cows with negative and positive CMT results. Bull Vet Inst Pulawy 49:209–213

    Google Scholar 

Download references

Conflict of interest

Authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Orino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, A., Yoshikawa, Y., Watanabe, K. et al. Analysis of the binding of bovine and human fibrinogen to ferritin: evidence that fibrinogen is a common ferritin-binding protein in mammals. Biometals 28, 679–685 (2015). https://doi.org/10.1007/s10534-015-9853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9853-9

Keywords

Navigation