Skip to main content
Log in

Behavioral effects of bovine lactoferrin administration during postnatal development of rats

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

We tested the hypothesis that rats consuming bovine lactoferrin (bLf) during postnatal development would show better performance of stressful tasks during adolescence. In the first study, we orally administered bLf (750 mg/kg) once daily between postnatal days 16–34. Rats then underwent a battery of behavioral tests: open field (forced exploration of risky environment), light–dark emergence (voluntary exploration of risky environment), baited holeboard (working and reference memory), food neophobia (preference for familiar versus novel food), forced swim (test for antidepressant efficacy), and shuttle-box escape (learning to escape footshock). bLf-supplemented rats showed less exploration of the risky environment, greater preference for the familiar food odor, and faster escape responses. The effect of bLf on forced-swim behavior depended on sex: immobility increased for males and decreased for females. In the next study, we replaced the forced-swim test with an escape-swim test in which rats learned to use a visual cue to locate an escape platform, and we tested the dose response of bLf on this and the shuttle-box escape test, with subjects receiving vehicle or bLf at 500, 1,000, or 2,000 mg/kg. Under this modified testing battery, improvement of escape from footshock was not observed at any dose. However, males, but not females, showed a significant dose-dependent effect of bLf on acquisition of the water-escape task. On average, males receiving a higher dose mastered the task 20–25 % sooner than rats receiving a lower dose or vehicle. These results offer preliminary evidence that bLf supplementation during development can improve subsequent cognitive performance during stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnett SA (1958) Experiments on “neophobia” in wild and laboratory rats. Br J Psychol 49:195–201

    Article  CAS  PubMed  Google Scholar 

  • Barros HM, Ferigolo M (1998) Ethopharmacology of imipramine in the forced-swimming test: gender differences. Neurosci Biobehav Rev 23:279–286

    Article  CAS  PubMed  Google Scholar 

  • Berlov MN, Korableva ES, Andreeva YV et al (2007) Lactoferrin from canine neutrophils: isolation and physicochemical and antimicrobial properties. Biochemistry 72:445–451

    CAS  PubMed  Google Scholar 

  • Bessler HC, de Oliveira IR, Giugliano LG (2006) Human milk glycoproteins inhibit the adherence of Salmonella typhimurium to HeLa cells. Microbiol Immunol 50:877–882

    Article  CAS  PubMed  Google Scholar 

  • Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055. doi:10.1073/pnas.1102999108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaway NL, Riha PD, Wrubel KM et al (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neurosci Lett 332:83–86

    Article  CAS  PubMed  Google Scholar 

  • Carroll ME, Dinc HI, Levy CJ, Smith JC (1975) Demonstrations of neophobia and enhanced neophobia in the albino rat. J Comp Physiol Psychol 89:457–467

    Article  CAS  PubMed  Google Scholar 

  • Cole BJ, Robbins TW, Everitt BJ (1988) Lesions of the dorsal noradrenergic bundle simultaneously enhance and reduce responsivity to novelty in a food preference test. Brain Res Rev 472:325–349

    Article  CAS  Google Scholar 

  • Colorado RA, Shumake J, Conejo NM et al (2006) Effects of maternal separation, early handling, and standard facility rearing on orienting and impulsive behavior of adolescent rats. Behav Process 71:51–58

    Article  Google Scholar 

  • Cooper SJ (1980) Effects of chlordiazepoxide and diazepam on feeding performance in a food-preference test. Psychopharmacology 69:73–78

    Article  CAS  PubMed  Google Scholar 

  • Cramer CP, Thiels E, Alberts JR (1990) Weaning in rats: I. Maternal behavior. Dev Psychobiol 23:479–493. doi:10.1002/dev.420230604

    Article  CAS  PubMed  Google Scholar 

  • Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13:167–170

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. doi:10.1038/nrn3346

    Article  CAS  PubMed  Google Scholar 

  • Driscoll I, Howard SR, Prusky GT et al (2005) Seahorse wins all races: hippocampus participates in both linear and non-linear visual discrimination learning. Behav Brain Res 164:29–35. doi:10.1016/j.bbr.2005.05.006

    Article  PubMed  Google Scholar 

  • Fillebeen C, Descamps L, Dehouck MP et al (1999) Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J Biol Chem 274:7011–7017. doi:10.1074/jbc.274.11.7011

    Article  CAS  PubMed  Google Scholar 

  • Findlay E, Ng KT, Reid RL, Armstrong SM (1981) The effect of iron deficiency during development on passive avoidance learning in the adult rat. Physiol Behav 27:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Gentsch C, Lichtsteiner M, Feer H (1981) Taste neophobia in individually and socially reared male rats. Physiol Behav 27:199–202

    Article  CAS  PubMed  Google Scholar 

  • Gomez HF, Ochoa TJ, Herrera-Insua I et al (2002) Lactoferrin protects rabbits from Shigella flexneri-induced inflammatory enteritis. Infect Immun 70:7050–7053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigor MR, Carne A, Geursen A, Flint DJ (1988) Effect of extended lactation and diet on transferrin concentrations in rat milk. J Nutr 118:669–674

    CAS  PubMed  Google Scholar 

  • Hall C (1934) Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J Comp Psychol 18:385–403

    Article  Google Scholar 

  • Hall FS, Humby T, Wilkinson LS, Robbins TW (1997) The effects of isolation-rearing of rats on behavioural responses to food and environmental novelty. Physiol Behav 62:281–290

    Article  CAS  PubMed  Google Scholar 

  • Hayashida K, Kaneko T, Takeuchi T et al (2004) Oral administration of lactoferrin inhibits inflammation and nociception in rat adjuvant-induced arthritis. J Vet Med Sci 66:149–154

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Zhao J, Wang J et al (2012) Transgenic milk containing recombinant human lactoferrin modulates the intestinal flora in piglets. Biochem Cell Biol 90:485–496. doi:10.1139/o2012-003

    Article  CAS  PubMed  Google Scholar 

  • Hunziker MH, Dos Santos CV (2007) Learned helplessness: effects of response requirement and interval between treatment and testing. Behav Process 76:183–191

    Article  CAS  Google Scholar 

  • Jenkins JA, Williams P, Kramer GL et al (2001) The influence of gender and the estrous cycle on learned helplessness in the rat. Biol Psychol 58:147–158

    Article  CAS  PubMed  Google Scholar 

  • Ji B, Maeda J, Higuchi M et al (2006) Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 78:851–855. doi:10.1016/j.lfs.2005.05.085

    Article  CAS  PubMed  Google Scholar 

  • Kabbaj M, Devine DP, Savage VR, Akil H (2000) Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. J Neurosci 20:6983–6988

    CAS  PubMed  Google Scholar 

  • Kamemori N, Takeuchi T, Hayashida K-I, Harada E (2004) Suppressive effects of milk-derived lactoferrin on psychological stress in adult rats. Brain Res 1029:34–40. doi:10.1016/j.brainres.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  • Kawakami H, Hiratsuka M, Dosako S (1988) Effects of iron-saturated lactoferrin on iron absorption. Agric Biol Chem 52:903–908

    Article  CAS  Google Scholar 

  • Kawakami H, Dosako S, Lönnerdal B (1990) Iron uptake from transferrin and lactoferrin by rat intestinal brush-border membrane vesicles. Am J Physiol 258:G535–G541

    CAS  PubMed  Google Scholar 

  • Legrand D, Elass E, Carpentier M, Mazurier J (2005) Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci 62:2549–2559. doi:10.1007/s00018-005-5370-2

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Jiang M, Kang T et al (2013) Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 34:3870–3881. doi:10.1016/j.biomaterials.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  • Lönnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77:1537S–1543S

    PubMed  Google Scholar 

  • Lönnerdal B (2009) Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 12:293–297. doi:10.1097/MCO.0b013e328328d13e

    Article  PubMed  Google Scholar 

  • Maes M, Kubera M, Leunis J-C, Berk M (2012) Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 141:55–62. doi:10.1016/j.jad.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  • Marques AH, O’Connor TG, Roth C et al (2013) The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front Neurosci 7:120. doi:10.3389/fnins.2013.00120

    Article  PubMed  PubMed Central  Google Scholar 

  • Masson PL, Heremans JF (1971) Lactoferrin in milk from different species. Comp Biochem Physiol B 39:119–129

    Article  CAS  PubMed  Google Scholar 

  • Mora S, Dussaubat N, Díaz-Véliz G (1996) Effects of the estrous cycle and ovarian hormones on behavioral indices of anxiety in female rats. Psychoneuroendocrinology 21:609–620

    Article  CAS  PubMed  Google Scholar 

  • Neufeld K-AM, Kang N, Bienenstock J, Foster JA (2011) Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 4:492–494. doi:10.4161/cib.4.4.15702

    PubMed  PubMed Central  Google Scholar 

  • Ochoa TJ, Cleary TG (2009) Effect of lactoferrin on enteric pathogens. Biochimie 91:30–34. doi:10.1016/j.biochi.2008.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onal A, Kayalioğlu G, Parlar A et al (2010) Effect of prolonged administration of bovine lactoferrin in neuropathic pain: involvement of opioid receptors, nitric oxide and TNF-alpha. Life Sci 86:251–259. doi:10.1016/j.lfs.2009.12.007

    Article  PubMed  Google Scholar 

  • Padilla E, Barrett D, Shumake J, Gonzalez-Lima F (2009) Strain, sex, and open-field behavior: factors underlying the genetic susceptibility to helplessness. Behav Brain Res 201:257–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Padilla E, Shumake J, Barrett DW et al (2010) Novelty-evoked activity in open field predicts susceptibility to helpless behavior. Physiol Behav 101:746–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perona MTG, Waters S, Hall FS et al (2008) Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 19:566–574. doi:10.1097/FBP.0b013e32830cd80f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  • Raison CL, Lowry CA, Rook GAW (2010) Inflammation, sanitation, and consternation: loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch Gen Psychiatry 67:1211–1224. doi:10.1001/archgenpsychiatry.2010.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661. doi:10.1096/fj.07-9574LSF

    Article  CAS  PubMed  Google Scholar 

  • Riha PD, Rojas JC, Colorado RA, Gonzalez-Lima F (2008) Animal model of posterior cingulate cortex hypometabolism implicated in amnestic MCI and AD. Neurobiol Learn Mem 90:112–124. doi:10.1016/j.nlm.2008.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riha PD, Rojas JC, Gonzalez-Lima F (2011) Beneficial network effects of methylene blue in an amnestic model. Neuroimage 54:2623–2634. doi:10.1016/j.neuroimage.2010.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rytych JL, Elmore MRP, Burton MD et al (2012) Early life iron deficiency impairs spatial cognition in neonatal piglets. J Nutr 142:2050–2056. doi:10.3945/jn.112.165522

    Article  CAS  PubMed  Google Scholar 

  • Sandi C (2013) Stress and cognition. Wiley Interdiscip Rev Cogn Sci 4:245–261. doi:10.1002/wcs.1222

    Article  Google Scholar 

  • Schreiber G, Dryburgh H, Millership A et al (1979) The synthesis and secretion of rat transferrin. J Biol Chem 254:12013–12019

    CAS  PubMed  Google Scholar 

  • Shumake J, Gonzalez-Lima F (2003) Brain systems underlying susceptibility to helplessness and depression. Behav Cogn Neurosci Rev 2:198–221. doi:10.1177/1534582303259057

    Article  CAS  PubMed  Google Scholar 

  • Shumake J, Barrett D, Gonzalez-Lima F (2005) Behavioral characteristics of rats predisposed to learned helplessness: reduced reward sensitivity, increased novelty seeking, and persistent fear memories. Behav Brain Res 164:222–230

    Article  PubMed  Google Scholar 

  • Suzuki YA, Lopez V, Lönnerdal B (2005) Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci 62:2560–2575. doi:10.1007/s00018-005-5371-1

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Hayashida KI, Inagaki H et al (2003) Opioid mediated suppressive effect of milk-derived lactoferrin on distress induced by maternal separation in rat pups. Brain Res 979:216–224

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Kitagawa H, Harada E (2004) Evidence of lactoferrin transportation into blood circulation from intestine via lymphatic pathway in adult rats. Exp Physiol 89:263–270. doi:10.1113/expphysiol.2003.026633

    Article  CAS  PubMed  Google Scholar 

  • Teraguchi S, Wakabayashi H, Kuwata H et al (2004) Protection against infections by oral lactoferrin: evaluation in animal models. Biometals 17:231–234

    Article  CAS  PubMed  Google Scholar 

  • Tigyi Z, Kishore AR, Maeland JA et al (1992) Lactoferrin-binding proteins in Shigella flexneri. Infect Immun 60:2619–2626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CS, Chan WY, Kloer HU (1984) Comparative studies on the chemical and immunochemical properties of human milk, human pancreatic juice and bovine milk lactoferrin. Comp Biochem Physiol B 78:575–580

    Article  CAS  PubMed  Google Scholar 

  • Weinberg J (1982) Behavioral and physiological effects of early iron deficiency in the rat. In: Pollitt E, Leibel RL (eds) Iron deficiency: brain biochemistry and behaviour. Raven Press, New York, pp 93–123

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Yamauchi K, Toida T, Nishimura S et al (2000) 13-Week oral repeated administration toxicity study of bovine lactoferrin in rats. Food Chem Toxicol 38:503–512

    Google Scholar 

  • Yehuda S, Youdim ME, Mostofsky DI (1986) Brain iron-deficiency causes reduced learning capacity in rats. Pharmacol Biochem Behav 25:141–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank F. Gonzalez-Lima for access to lab space and equipment and the following students for their assistance with bLf administration and behavioral testing and scoring: Logan Cummings, Janelle Geltman, Kate Pumphrey, David Song, and Sumaiya Syed. In addition, the first author thanks Blake Simmon and Sarah Finney for advice and support in writing the C++ program used for FST data wrangling. This project was funded by the Mead Johnson Pediatric Nutrition Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Shumake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumake, J., Barrett, D.W., Lane, M.A. et al. Behavioral effects of bovine lactoferrin administration during postnatal development of rats. Biometals 27, 1039–1055 (2014). https://doi.org/10.1007/s10534-014-9735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9735-6

Keywords

Navigation