Skip to main content
Log in

Functional analysis of pyochelin-/enantiopyochelin-related genes from a pathogenicity island of Pseudomonas aeruginosa strain PA14

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Genomic islands are foreign DNA blocks inserted in so-called regions of genomic plasticity (RGP). Depending on their gene content, they are classified as pathogenicity, symbiosis, metabolic, fitness or resistance islands, although a detailed functional analysis is often lacking. Here we focused on a 34-kb pathogenicity island of Pseudomonas aeruginosa PA14 (PA14GI-6), which is inserted at RGP5 and carries genes related to those for pyochelin/enantiopyochelin biosynthesis. These enantiomeric siderophores of P. aeruginosa and certain strains of Pseudomonas protegens are assembled by a thiotemplate mechanism from salicylate and two molecules of cysteine. The biochemical function of several proteins encoded by PA14GI-6 was investigated by a series of complementation analyses using mutants affected in potential homologs. We found that PA14_54940 codes for a bifunctional salicylate synthase/salicyl-AMP ligase (for generation and activation of salicylate), that PA14_54930 specifies a dihydroaeruginoic acid (Dha) synthetase (for coupling salicylate with a cysteine-derived thiazoline ring), that PA14_54910 produces a type II thioesterase (for quality control), and that PA14_54880 encodes a serine O-acetyltransferase (for increased cysteine availability). The structure of the PA14GI-6-specified metabolite was determined by mass spectrometry, thin-layer chromatography, and HPLC as (R)-Dha, an iron chelator with antibacterial, antifungal and antitumor activity. The conservation of this genomic island in many clinical and environmental P. aeruginosa isolates of different geographical origin suggests that the ability for Dha production may confer a selective advantage to its host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bachmann BJ (1987) Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In: Neidbordt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington, pp 1190–1219

    Google Scholar 

  • Carmi R, Carmeli S, Levy E, Gough FJ (1994) (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J Nat Prod 57:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuppels DA, Stipanovic RD, Stoessl A, Stothers JB (1987) The constitution and properties of a pyochelin–zinc complex. Can J Chem 65:2126–2130

    Article  CAS  Google Scholar 

  • D’Argenio DA, Gallagher LA, Berg CA, Manoil C (2001) Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol 183:1466–1471

    Article  PubMed Central  PubMed  Google Scholar 

  • Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278

    Article  CAS  PubMed  Google Scholar 

  • Elliot CA, Kelly KF, Bonna RL, Wardlaw TR, Burns ER (1988) In vitro antiproliferative activity of 2′-(2-hydroxyphenyl)-2′thiazoline-4′carboxylic acid and its methyl ester on L1210 and P388 murine neoplasms. Cancer Chemother Pharm 21:233–236

    Article  CAS  Google Scholar 

  • Farinha MA, Kropinski AM (1990) High efficiency electroporation of Pseudomonas aeruginosa using frozen cell suspensions. FEMS Microbiol Lett 58:221–225

    CAS  PubMed  Google Scholar 

  • Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gamper M, Ganter B, Polito MR, Haas D (1992) RNA processing modulates the expression of the arcDABC operon in Pseudomonas aeruginosa. J Mol Biol 226:943–957

    Article  CAS  PubMed  Google Scholar 

  • Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoegy F, Lee X, Noel S, Rognan D, Mislin GL, Reimmann C, Schalk IJ (2009) Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J Biol Chem 284:14949–14957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2008) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  PubMed Central  PubMed  Google Scholar 

  • Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Raznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, pp 515–527

  • Laville J, Blumer C, Von Schroetter C, Gaia V, Défago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol 180:3187–3196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Déziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin P-C, Youard ZA, Reimmann C (2013) In vitro-binding of the natural siderophore enantiomers pyochelin and enantiopyochelin to their AraC-type regulators PchR in Pseudomonas. Biometals 26:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    Article  CAS  PubMed  Google Scholar 

  • Michel L, Bachelard A, Reimmann C (2007) Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology 153:1508–1518

    Article  CAS  PubMed  Google Scholar 

  • Patel HM, Tao J, Walsh CT (2003) Epimerization of an L-cysteinyl to a D-cysteinyl residue during thiazoline ring formation in siderophore chain elongation by pyochelin synthetase from Pseudomonas aeruginosa. Biochemistry 42:10514–10527

    Article  CAS  PubMed  Google Scholar 

  • Phoebe CH Jr, Combie J, Albert FG, Van Tran K, Cabrera J, Correira HJ, Guo Y, Lindermuth J, Rauert N, Galbraith W, Selitrennikoff CP (2001) Extremophilic orgainisms as and unexplored source of antifungal compounds. J Antibiot 54:56–65

    Article  CAS  PubMed  Google Scholar 

  • Plotnikova JM, Rahme LG, Ausubel FM (2000) Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 124:1766–1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pukatzki S, Kressin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci USA 99:3159–3164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quadri LEN, Keating TA, Patel HM, Walsh CT (1999) Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD, PchE and PchF. Biochemistry 38:14941–14954

    Article  CAS  PubMed  Google Scholar 

  • Reimmann C (2012) Inner-membrane transporters for the siderophores pyochelin in Pseudomonas aeruginosa and enantio-pyochelin in Pseudomonas fluorescens display different enantioselectivities. Microbiology 158:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Reimmann C, Serino L, Beyeler M, Haas D (1998) Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology 144:3135–3148

    Article  CAS  PubMed  Google Scholar 

  • Reimmann C, Patel HM, Serino L, Barone M, Walsh CT, Haas D (2001) Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J Bacteriol 183:813–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reimmann C, Patel HM, Walsh CT, Haas D (2004) PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa. J Bacteriol 186:6367–6373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Laboratory Press, NY

    Google Scholar 

  • Schmidt KD, Tümmler B, Römling U (1996) Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J Bacteriol 178:85–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnider U, Keel C, Blumer C, Troxler J, Défago G, Haas D (1995) Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177:5387–5392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, Loria R (2011) The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology 157:2681–2693

    Article  CAS  PubMed  Google Scholar 

  • Serino L, Reimmann C, Visca P, Beyeler M, Della Chiesa V, Haas D (1997) Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song L, Zhang XH (2009) Innovation for ascertaining genomic islands in PAO1 and PA14 of Pseudomonas aeruginosa. Chin Sci Bull 54:3991–3999

    Article  CAS  Google Scholar 

  • Song L, Zhang XH (2011) Acurate localization and excision of genomic islands in four strains of Pseudomonas aeruginosa and Pseudomonas fluorescens. Chin Sci Bull 56:987–995

    Article  CAS  Google Scholar 

  • Stanisich VA, Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19:91–108

    Article  CAS  PubMed  Google Scholar 

  • Sturgill G, Toutain CM, Komperda J, O’Toole GA, Rather PN (2004) Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of cysE enhances biofilm formation in Escherichia coli. J Bacteriol 186:7610–7617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terano H, Nomoto K, Takase S (2002) Siderophore production and induction of iron-regulated proteins by a microorganism from rhizosphere of barley. Biosci Biotechnol Biochem 66:2471–2473

    Article  CAS  PubMed  Google Scholar 

  • Thomas MS (2007) Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 20:431–452

    Article  CAS  PubMed  Google Scholar 

  • Van Delden C, Iglewski B (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    Article  PubMed Central  PubMed  Google Scholar 

  • Visca P, Serino L, Orsi N (1992) Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdin. J Bacteriol 174:5727–5731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voisard C, Rella M, Haas D (1988) Conjugative transfer of plasmid RP1 to soil isolates of Pseudomonas fluorescens is facilitated by certain large RP1 deletions. FEMS Microbiol Lett 55:9–14

    Article  CAS  Google Scholar 

  • Voisard C, Bull C, Keel C, Laville J, Maurhofer M, Schnider U, Défago G, Haas D (1994) Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In: O’Gara F, Dowling FDL, Boesten B (eds) Molecular ecology of rhizosphere microorganisms, pp 67–69

  • Watson AA, Alm RA, Mattick JS (1996) Construction of improved vectors for protein production in Pseudomonas aeruginosa. Gene 172:163–164

    Article  CAS  PubMed  Google Scholar 

  • Ye RW, Haas D, Ka JO, Krishnapillai V, Zimmermann A, Baird C, Tiedje JM (1995) Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177:3606–3609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Youard ZA, Reimmann C (2010) Stereospecific recognition of pyochelin and enantio-pyochelin by the PchR proteins in fluorescent pseudomonads. Microbiology 156:1772–1782

    Article  CAS  PubMed  Google Scholar 

  • Youard ZA, Mislin GL, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:35546–35553

    Article  CAS  PubMed  Google Scholar 

  • Youard ZA, Wenner N, Reimmann C (2011) Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 24:513–522

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Zeb A. Youard for help with degenerate primer design, Paul Majcherczyk for HPLC analyses, and Nadja Leimer and Luis Alejandro González Blázquez for carrying out initial experiments on this project. This work as supported by the Swiss National Foundation for scientific research (project 31003A-132998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Reimmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maspoli, A., Wenner, N., Mislin, G.L.A. et al. Functional analysis of pyochelin-/enantiopyochelin-related genes from a pathogenicity island of Pseudomonas aeruginosa strain PA14. Biometals 27, 559–573 (2014). https://doi.org/10.1007/s10534-014-9729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9729-4

Keywords

Navigation